login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094705 Convolution of Jacobsthal(n) and 3^n. 7
0, 1, 4, 15, 50, 161, 504, 1555, 4750, 14421, 43604, 131495, 395850, 1190281, 3576304, 10739835, 32241350, 96767741, 290390604, 871346575, 2614389250, 7843866801, 23532998504, 70601791715, 211810967550, 635444087461, 1906354632004, 5719108635255, 17157415384250 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For k>2, a(n,k)=k^(n+1)/((k-2)(k+1))-2^(n+1)/(3k-6)-(-1)^n/(3k+3) gives the convolution of Jacobsthal(n) and k^n.

In general x/((1-ax)(1-ax-bx^2)) expands to sum{k=0..floor(n/2), C(n-k,k+1)a^(n-k-1)*(b/a)^k}. - Paul Barry, Oct 25 2004

LINKS

Table of n, a(n) for n=0..28.

Index entries for linear recurrences with constant coefficients, signature (4,-1,-6).

FORMULA

G.f.: x/((1+x)*(1-2*x)*(1-3*x)).

a(n) = 3*3^n/4 -2*2^n/3 -(-1)^n/12.

a(n) = 4*a(n-1) -a(n-2) -6*a(n-3).

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k+1)*2^(n-k-1)*(3/2)^k. - Paul Barry, Oct 25 2004

MATHEMATICA

LinearRecurrence[{4, -1, -6}, {0, 1, 4}, 30] (* Harvey P. Dale, Apr 02 2017 *)

Jacob0[n_] := (2^n - (-1)^n)/3; a[n_] := First@ListConvolve[Table[Jacob0[i], {i, 0, n}], 3^Range[0, n]]; Table[a[x], {x, 0, 10}] (* Robert P. P. McKone, Nov 28 2020 *)

PROG

(PARI) concat(0, Vec(x/((1+x)*(1-2*x)*(1-3*x)) + O(x^50))) \\ Michel Marcus, Sep 13 2014

CROSSREFS

Cf. A001045 (Jacobsthal), A000244(3^n), A045883.

Sequence in context: A056327 A026328 A014532 * A280786 A283276 A196835

Adjacent sequences:  A094702 A094703 A094704 * A094706 A094707 A094708

KEYWORD

easy,nonn

AUTHOR

Paul Barry, May 21 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 22:03 EDT 2021. Contains 346441 sequences. (Running on oeis4.)