login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094705
Convolution of Jacobsthal(n) and 3^n.
9
0, 1, 4, 15, 50, 161, 504, 1555, 4750, 14421, 43604, 131495, 395850, 1190281, 3576304, 10739835, 32241350, 96767741, 290390604, 871346575, 2614389250, 7843866801, 23532998504, 70601791715, 211810967550, 635444087461, 1906354632004, 5719108635255, 17157415384250
OFFSET
0,3
COMMENTS
For k>2, a(n,k)=k^(n+1)/((k-2)(k+1))-2^(n+1)/(3k-6)-(-1)^n/(3k+3) gives the convolution of Jacobsthal(n) and k^n.
In general x/((1-ax)(1-ax-bx^2)) expands to Sum_{k=0..floor(n/2)} C(n-k,k+1)a^(n-k-1)*(b/a)^k. - Paul Barry, Oct 25 2004
FORMULA
G.f.: x/((1+x)*(1-2*x)*(1-3*x)).
a(n) = (3^(n+2) - 2^(n+3) - (-1)^n)/12.
a(n) = 4*a(n-1) -a(n-2) -6*a(n-3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k+1)*2^(n-k-1)*(3/2)^k. - Paul Barry, Oct 25 2004
a(n) = (3^(n+1) - A001045(n+3))/4. - G. C. Greubel, Jul 21 2022
MATHEMATICA
LinearRecurrence[{4, -1, -6}, {0, 1, 4}, 30] (* Harvey P. Dale, Apr 02 2017 *)
Jacob0[n_] := (2^n - (-1)^n)/3; a[n_] := First@ListConvolve[Table[Jacob0[i], {i, 0, n}], 3^Range[0, n]]; Table[a[x], {x, 0, 10}] (* Robert P. P. McKone, Nov 28 2020 *)
PROG
(PARI) concat(0, Vec(x/((1+x)*(1-2*x)*(1-3*x)) + O(x^50))) \\ Michel Marcus, Sep 13 2014
(Magma) [(3^(n+2) -2^(n+3) -(-1)^n)/12: n in [0..50]]; // G. C. Greubel, Jul 21 2022
(SageMath) [(3^(n+1) - lucas_number1(n+3, 1, -2))/4 for n in (0..50)] # G. C. Greubel, Jul 21 2022
CROSSREFS
Cf. A001045 (Jacobsthal), A000244(3^n), A045883.
Sequence in context: A056327 A026328 A014532 * A280786 A283276 A196835
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 21 2004
STATUS
approved