login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280786
Number of topologically distinct sets of n circles with one pair intersecting.
4
1, 4, 15, 50, 162, 506, 1558, 4727, 14227, 42521, 126506, 374969, 1108476, 3269902, 9630631, 28328999, 83251569, 244471484, 717486860, 2104777227, 6172357873, 18096097750, 53044095421, 155464365080, 455601800970, 1335107222743, 3912330438784, 11464463809180, 33595343643160
OFFSET
2,2
LINKS
R. J. Mathar, Topologically Distinct Sets of Non-intersecting Circles in the Plane, arXiv:1603.00077 [math.CO], 2016, row sums Table 7.
MAPLE
A280786 := proc(N)
if N < 2 then
0;
else
add(A280787(N, f), f=1..N-1) ;
end if;
end proc:
A280787 := proc(N, f)
option remember ;
local Npr, ct ;
if f = N then
return 0;
elif f = N-1 then
return 1;
elif f = 1 then
A280786(N-1)+A280788(N-2) ;
else
ct := 0 ;
for Npr from 1 to N-1 do
ct := ct+procname(Npr, 1)*A033185(N-Npr, f-1) ;
end do:
ct ;
end if;
end proc:
seq(A280786(n), n=2..30) ; # R. J. Mathar, Mar 06 2017
MATHEMATICA
a81[n_] := a81[n] = If[n <= 1, n, Sum[a81[n - j]*DivisorSum[j, #1*a81[#1] &], {j, n - 1}]/(n - 1)];
A027852[n_] := Module[{dh = 0, np}, For[np = 0, np <= n, np++, dh = a81[np]*a81[n - np] + dh]; If[EvenQ[n], dh = a81[n/2] + dh]; dh/2];
A280788[n_] := If[n == 0, 1, Sum[a81[np + 1]*A027852[n - np + 2], {np, 0, n}]];
t[n_] := t[n] = Module[{d, j}, If[n == 1, 1, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n - j], {j, 1, n - 1}]/(n - 1)]];
b[1, 1, 1] = 1;
b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[t[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]]; A033185[n_, k_] := b[n, n, k];
A280786[n_] := If[n < 2, 0, Sum[A280787[n, f], {f, 1, n - 1}]];
A280787[n_, f_] := A280787[n, f] = Module[{ct}, Which[f == n, Return[0], f == n - 1, Return[1], f == 1, Return[A280786[n - 1] + A280788[n - 2]], True, ct = 0; Do[ct += A280787[np, 1]*A033185[n - np, f - 1], {np, 1, n - 1}]]; ct];
Table[A280786[n], {n, 2, 30}] (* Jean-François Alcover, Nov 23 2017, after R. J. Mathar and Alois P. Heinz *)
CROSSREFS
Row sums of A280787.
Column k=1 of A261070.
Sequence in context: A026328 A014532 A094705 * A283276 A196835 A055218
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 20 2017
STATUS
approved