login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291396
p-INVERT of (1,1,0,0,0,0,...), where p(S) = (1 - S)(1 - 2 S)(1 - 3 S).
2
6, 31, 140, 596, 2440, 9751, 38344, 149147, 575794, 2211278, 8460912, 32289105, 122994890, 467887343, 1778208080, 6753481344, 25636583768, 97283620659, 369070501684, 1399909005427, 5309251592646, 20133801242298, 76346423589984, 289487843638333
OFFSET
0,1
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291382 for a guide to related sequences.
FORMULA
G.f.: -(((1 + x) (6 - 11 x - 5 x^2 + 12 x^3 + 6 x^4))/((-1 + x + x^2) (-1 + 2 x + 2 x^2) (-1 + 3 x + 3 x^2))).
a(n) = 6*a(n-1) - 5*a(n-2) - 16*a(n-3) + 7*a(n-4) + 18*a(n-5) + 6*a(n-6) for n >= 7.
MATHEMATICA
z = 60; s = x + x^2; p = (1 - s)(1 - 2s)(1 - 3s);
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *)
u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291396 *)
CROSSREFS
Sequence in context: A128568 A079924 A009076 * A012714 A094951 A099621
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 06 2017
STATUS
approved