login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094951
a(n) = A081038(n) + A077616(n).
1
6, 31, 144, 621, 2538, 9963, 37908, 140697, 511758, 1830519, 6456024, 22497669, 77590386, 265189059, 899198172, 3027619377, 10130328342, 33705582543, 111577100832, 367662044061, 1206427402746, 3943553157531, 12845313733284
OFFSET
1,1
COMMENTS
Performing the same operation but using the multiplier [1 0 0] yields [3^n 2*A027471(n+1) A077616(n)]. Example: M^4 * [1 0 0] = [81 216 324] where 324 = A077616(4) and 216/2 = 108 = A027471(5).
FORMULA
a(n) = A081038(n) + A077616(n).
Let M = the 3 X 3 matrix [3 0 0 / 2 3 0 / 1 2 3]; then M^n * [1 1 1] = [3^n A081038(n) a(n)], where a(n) - A081038(n) = A077616(n).
From Colin Barker, Nov 09 2012: (Start)
a(n) = 3^(n-2)*(9 + 7*n + 2*n^2).
a(n) = 9*a(n-1) - 27*a(n-2) + 27*a(n-3).
G.f.: x*(6 - 23*x + 27*x^2)/(1-3*x)^3. (End)
E.g.f.: -1 + (1 + 3*x + 2*x^2)*exp(3*x). - G. C. Greubel, Jun 06 2019
EXAMPLE
a(3) = 144 = 81 + 63 = A081038(3) + A077616(3).
a(4) = 621 = 297 + 324 = A081038(4) + A077616(4).
a(4) = 621 since M^4 * [1 1 1] = [81 297 621] = [3^4 A081038(4), a(4)].
MATHEMATICA
a[n_] := (MatrixPower[{{3, 0, 0}, {2, 3, 0}, {1, 2, 3}}, n].{{1}, {1}, {1}})[[3, 1]]; Table[ a[n], {n, 23}] (* Robert G. Wilson v, Jun 05 2004 *)
Table[3^(n-2)*(9+7*n+2*n^2), {n, 1, 30}] (* G. C. Greubel, Jun 06 2019 *)
PROG
(PARI) vector(30, n, 3^(n-2)*(9+7*n+2*n^2)) \\ G. C. Greubel, Jun 06 2019
(Magma) [3^(n-2)*(9+7*n+2*n^2): n in [1..30]]; // G. C. Greubel, Jun 06 2019
(Sage) [3^(n-2)*(9+7*n+2*n^2) for n in (1..30)] # G. C. Greubel, Jun 06 2019
(GAP) List([1..30], n-> 3^(n-2)*(9+7*n+2*n^2)) # G. C. Greubel, Jun 06 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, May 26 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, Jun 05 2004
STATUS
approved