OFFSET
1,1
COMMENTS
If m=p*q for the twin prime pair (p, q), then the relation p^2 + q^2 = 2*(m+2) is evident from equations p*(p+2)=m=q*(q-2). Now phi(m)=(p-1)*(q-1)=p^2 - 1 and sigma(m)=(p+1)*(q+1)=q^2 - 1, so that phi(m)*sigma(m)=(p*q)^2 -(p^2 + q^2)+1=m^2-2*(m+2)+1=(m-3)*(m+1).
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
FORMULA
MATHEMATICA
EulerPhi[#]DivisorSigma[1, #]&/@Times@@@Select[Partition[Prime[ Range[ 200]], 2, 1], #[[2]]-#[[1]]==2&] (* Harvey P. Dale, Apr 13 2017 *)
PROG
(PARI) {m=400; p=1; while(p<m, p=nextprime(p); q=nextprime(p+1); if(p+2==q, r=p*q; print1(eulerphi(r)*sigma(r), ", ")); p=q)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Jun 19 2004
EXTENSIONS
Corrected and extended by Jason Earls, Rick L. Shepherd, Vladeta Jovovic and Klaus Brockhaus, Jun 20 2004
STATUS
approved