login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094949
Phi(m)*sigma(m), where m is the product of exactly two primes that differ by 2, where phi=A000010, sigma=A000203.
1
192, 1152, 20160, 103680, 806400, 3104640, 12945600, 26853120, 108201600, 136002240, 362597760, 506160000, 1049630400, 1358807040, 1536796800, 2702128320, 3317529600, 5314118400, 6323748480, 9475464960, 14665694400
OFFSET
1,1
COMMENTS
If m=p*q for the twin prime pair (p, q), then the relation p^2 + q^2 = 2*(m+2) is evident from equations p*(p+2)=m=q*(q-2). Now phi(m)=(p-1)*(q-1)=p^2 - 1 and sigma(m)=(p+1)*(q+1)=q^2 - 1, so that phi(m)*sigma(m)=(p*q)^2 -(p^2 + q^2)+1=m^2-2*(m+2)+1=(m-3)*(m+1).
LINKS
FORMULA
a(n)=(m-3)*(m+1), where m=A037074(n).
a(n)=192*A002415(k), where k=A040040(n-1).
a(n) = (A120875(n))^2 - 4 = 4*((A120876(n))^2 - 1). - Lekraj Beedassy, Jul 09 2006
MATHEMATICA
EulerPhi[#]DivisorSigma[1, #]&/@Times@@@Select[Partition[Prime[ Range[ 200]], 2, 1], #[[2]]-#[[1]]==2&] (* Harvey P. Dale, Apr 13 2017 *)
PROG
(PARI) {m=400; p=1; while(p<m, p=nextprime(p); q=nextprime(p+1); if(p+2==q, r=p*q; print1(eulerphi(r)*sigma(r), ", ")); p=q)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Jun 19 2004
EXTENSIONS
Corrected and extended by Jason Earls, Rick L. Shepherd, Vladeta Jovovic and Klaus Brockhaus, Jun 20 2004
STATUS
approved