

A094947


G.f.: A(x) = Product_{n>=1} 1/(1  A007947(n)*x^n)^(1/n), where A007947(n) is the product of the distinct prime factors of n.


2



1, 1, 2, 3, 5, 7, 13, 17, 27, 39, 61, 82, 136, 179, 275, 398, 584, 796, 1251, 1668, 2516, 3577, 5198, 7100, 10931, 14797, 21738, 30929, 44622, 61209, 93557, 126219, 184593, 262621, 376923, 521670, 785414, 1066281, 1550829, 2211872, 3173795, 4381455
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Sequence consists entirely of integers, even though the g.f. is obtained by the infinite product of the nth roots of 1/(1  A007947(n)*x^n).
Limit of a(n)/a(n+1) = (1/3)^(1/3) as n grows.


LINKS



EXAMPLE

1/A(x) = (1x)*(12x^2)^(1/2)*(13x^3)^(1/3)*(12x^4)^(1/4)*(15x^5)^(1/5)*...


PROG

(PARI) a(n)=polcoeff(prod(k=1, n, 1/(1prod(i=1, omega(k), factor(k)[i, 1])*x^k+x*O(x^n))^(1/k)), n)


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



