The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188809 Rigidly-deletable primes under the rule that leading zeros are disallowed. 3
2, 3, 5, 7, 13, 17, 29, 31, 43, 47, 59, 67, 71, 79, 83, 97, 103, 107, 127, 157, 163, 269, 271, 359, 383, 439, 457, 463, 487, 509, 547, 569, 571, 607, 643, 659, 683, 701, 709, 751, 769, 863, 907, 929, 983, 1087, 1217, 1303, 1427, 1487, 2069, 2371, 2609, 2671 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Rigidly-deletable primes are deletable primes where the choice of digit to delete is unique (all other choices give nonprime numbers).
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000
Chris Caldwell, The Prime Glossary, Deletable prime
Carlos Rivera, Puzzle 138. Deletable primes, The Prime Puzzles and Problems Connection.
EXAMPLE
103 is a member since removing a digit will either give 03 which has a leading zero, or give one of the numbers 13 or 10. 2017 is not a member since removing a digit will either give 017 which has a leading zero, or give one of the numbers 217, 207, or 201, which are all composite. - Arkadiusz Wesolowski, Nov 27 2021
MATHEMATICA
lst1 = {}; Do[If[PrimeQ[n], p = n; Label[begin]; lst2 = {}; Do[i = IntegerDigits[p]; c = FromDigits@Drop[i, {d}]; If[Length[i] - 1 == IntegerLength[c], AppendTo[lst2, c]], {d, IntegerLength@p}]; t = Select[lst2, PrimeQ[#] &]; If[Length[t] == 1, p = FromDigits[t]; Goto[begin]]; If[IntegerLength[p] == 1, AppendTo[lst1, n]]], {n, 2671}]; lst1 (* Arkadiusz Wesolowski, Feb 22 2013 *)
CROSSREFS
Cf. A080608 (deletable primes).
Sequence in context: A094947 A231474 A092621 * A350443 A152449 A048975
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Name clarified by Arkadiusz Wesolowski, Nov 27 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 22:09 EDT 2024. Contains 372782 sequences. (Running on oeis4.)