OFFSET
1,1
COMMENTS
This sequence contains the primes that are each one more than any term of sequence A023758.
In binary these primes are represented, reading left to right, as some number of 1's, followed by some number of 0's (possibly no 0's), followed finally by one 1 as the rightmost digit.
All odd terms p satisfy the property that (p NOR (p-2))=0. - Gary Detlefs, May 03 2019
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..1000
MAPLE
isA000079 := proc(n) local i ; RETURN( add(i, i=convert(n, base, 2)) = 1 ) ; end : isA000225 := proc(n) isA000079(n+1) ; end: A007814 := proc(n) local p2, a, p ; a := 0 ; p2 := ifactors(n)[2] ; for p in p2 do if op(1, p) = 2 then a := op(2, p) ; fi; od; RETURN(a) ; end: isA023758 := proc(n) local ord ; ord := A007814(n) ; RETURN ( isA000225(n/2^ord) ) ; end: isA152449 := proc(n) local ord, np1 ; if isprime(n) then RETURN ( isA023758(n-1) ) ; else false; fi; end: for i from 1 to 100000 do p := ithprime(i) ; if isA152449(p) then printf("%d, ", p) ; fi; od: # R. J. Mathar, Dec 05 2008
MATHEMATICA
Select[Union[Flatten[Table[2^j-2^k+1, {j, 20}, {k, 0, j-1}]]], PrimeQ] (* Harvey P. Dale, Mar 14 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Dec 04 2008
EXTENSIONS
STATUS
approved