login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k+1) * 3^(n-k-1)*(4/3)^k.
4

%I #12 Sep 08 2022 08:45:15

%S 0,1,6,31,144,637,2730,11467,47508,194953,794574,3222583,13023192,

%T 52491349,211161138,848231779,3403688796,13647040225,54685016022,

%U 219030629455,876994213920,3510591943981,14050213040826,56224387958011

%N a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k+1) * 3^(n-k-1)*(4/3)^k.

%C In general a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k+1) * u^(n-k-1)* (v/u)^(k-1) has g.f. x^2/((1-u*x)*(1-u*x-v*x^2)) and satisfies the recurrence a(n) = 2*u*a(n-1) - (u^2-v)*a(n-2) - u*v*a(n-3).

%H G. C. Greubel, <a href="/A099621/b099621.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-5,-12).

%F G.f.: x^2/((1-3*x)*(1-3*x-4*x^2)).

%F a(n) = 6*a(n-1) - 5*a(n-2) - 12*a(n-3).

%F From _G. C. Greubel_, Jun 06 2019: (Start)

%F a(n) = (4^(n+2) - 5*3^(n+1) - (-1)^n)/20.

%F E.g.f.: (-exp(-x) - 15*exp(3*x) + 16*exp(4*x))/20. (End)

%t Table[Sum[Binomial[n-k,k+1]3^(n-k-1) (4/3)^k,{k,0,Floor[n/2]}],{n,0,25}] (* or *) LinearRecurrence[{6,-5,-12},{0,1,6},30] (* _Harvey P. Dale_, Dec 13 2012 *)

%t Table[(4^(n+2)-5*3^(n+1)-(-1)^n)/20, {n,0,30}] (* _G. C. Greubel_, Jun 06 2019 *)

%o (PARI) vector(30, n, n--; (4^(n+2)-5*3^(n+1)-(-1)^n)/20) \\ _G. C. Greubel_, Jun 06 2019

%o (Magma) [(4^(n+2)-5*3^(n+1)-(-1)^n)/20: n in [0..30]]; // _G. C. Greubel_, Jun 06 2019

%o (Sage) [(4^(n+2)-5*3^(n+1)-(-1)^n)/20 for n in (0..30)] # _G. C. Greubel_, Jun 06 2019

%o (GAP) List([0..30], n-> (4^(n+2)-5*3^(n+1)-(-1)^n)/20) # _G. C. Greubel_, Jun 06 2019

%Y Cf. A094705, A099622.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Oct 25 2004