login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum C(n-k,k+2)2^(n-k-2)(3/2)^k, k=0..floor(n/2).
2

%I #9 Dec 16 2024 05:47:19

%S 0,0,1,6,27,104,369,1242,4039,12828,40077,123758,379011,1153872,

%T 3498025,10572354,31884543,96010436,288788613,867967830,2607282235,

%U 7828953720,23501774241,70536546986,211674885687,635160738924,1905765565309

%N Sum C(n-k,k+2)2^(n-k-2)(3/2)^k, k=0..floor(n/2).

%C In general a(n)=sum{k=0..floor(n/2), C(n-k,k+2)u^(n-k-2)(v/u)^k has g.f. x^2/((1-u*x)^2(1-u*x-v*x^2)) and satisfies the recurrence a(n)=3u*a(n-1)-(3u^2-v)a(n-2)+(u^3-2uv)a(n-3)+u^2^v*a(n-4).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-9,-4,12).

%F G.f.: x^2/((1-2x)^2(1-2x-3x^2)); a(n)=6a(n-1)-9a(n-2)-4a(n-3)+12a(n-4).

%F a(n) = -(n/3+7/9)*2^n +(-1)^n/36 +3^(n+1)/4 . - _R. J. Mathar_, Dec 16 2024

%t LinearRecurrence[{6,-9,-4,12},{0,0,1,6},30] (* _Harvey P. Dale_, Mar 27 2016 *)

%K easy,nonn

%O 0,4

%A _Paul Barry_, Oct 25 2004