OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..173
FORMULA
a(n)=(n+1)*(4^n-binomial(2*n+1, n))/2; G.f.: x*c(x)/(1-4*x)^2, where c(x) = g.f. for Catalan numbers A000108; also convolution of A000346(n-1), n >= 0, where A000346(-1)=0, with A000302 (powers of 4). - Wolfdieter Lang
Asymptotics: a(n) ~ 2^(2*n-1)*(n+1-sqrt(4*n/Pi)). - Fung Lam, Mar 28 2014
Recurrence: (n-1)*n*a(n) = 2*(n-1)*(4*n+1)*a(n-1) - 8*n*(2*n-1)*a(n-2). - Vaclav Kotesovec, Mar 28 2014
MATHEMATICA
Table[Sum[CatalanNumber[j](n-j)4^(n-j-1), {j, -0, n-1}], {n, 0, 30}] (* Harvey P. Dale, Nov 15 2020 *)
PROG
(Magma) [(n+1)*(4^n-Binomial(2*n+1, n))/2: n in [0..25]]; // Vincenzo Librandi, Jun 09 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Peter Winkler (pw(AT)bell-labs.com)
STATUS
approved