The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304370 Number of function calls of the first kind required to compute ack(3,n), where ack denotes the Ackermann function. 3
 9, 58, 283, 1244, 5213, 21342, 86367, 347488, 1394017, 5584226, 22353251, 89445732, 357848421, 1431524710, 5726360935, 22905967976, 91624920425, 366501778794, 1466011309419, 5864053626220, 23456231282029, 93824958682478, 375299901838703, 1501199741572464 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The distinction between different kinds of recursive calls is based on a naive implementation of the Ackermann function in C. int ack(int m, int n) { // Final result ....if (m==0) return n + 1; . // Recursive calls of the first kind: ....if (n==0) return ack(m - 1, 1); . // Recursive calls of the second kind: ....return ack(m - 1, ack(m, n - 1)); } LINKS Index entries for linear recurrences with constant coefficients, signature (8,-21,22,-8). FORMULA G.f.: (8*x^2-14*x+9)/((4*x-1)*(2*x-1)*(x-1)^2). - Alois P. Heinz, May 12 2018 CROSSREFS Cf. A036563, A074877, A304371. Sequence in context: A044147 A044528 A027174 * A099624 A018218 A026750 Adjacent sequences:  A304367 A304368 A304369 * A304371 A304372 A304373 KEYWORD nonn,easy AUTHOR Olivier Gérard, May 11 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 08:02 EDT 2022. Contains 356184 sequences. (Running on oeis4.)