login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074877
Number of function calls required to compute ack(3,n), where ack denotes the Ackermann function.
5
15, 106, 541, 2432, 10307, 42438, 172233, 693964, 2785999, 11164370, 44698325, 178875096, 715664091, 2862983902, 11452590817, 45811673828, 183249316583, 733002509034, 2932020521709, 11728103058160, 46912454175475, 187649900587766, 750599770123001, 3002399416036092
OFFSET
0,1
COMMENTS
The Ackermann function is defined recursively for nonnegative integers m,n by: ack(0,n) = n + 1 if m=0; ack(m,0) = ack(m-1,1) if m>0 and n=0; ack(m,n) = ack(m-1,ack(m,n-1)) otherwise.
FORMULA
G.f.: (15-14*x+8*x^2)/((4*x-1)*(2*x-1)*(x-1)^2); recurrence: a(n) = 8*a(n-1)-21*a(n-2)+22*a(n-3)-8*a(n-4); a(n) = 128/3*4^n-40*2^n+3*n+37/3 for n>=0. - Pab Ter (pabrlos(AT)yahoo.com), May 29 2004
a(n) ~ 128/3*4^n. [Charles R Greathouse IV, Dec 09 2011]
MATHEMATICA
Table[128 / 3 4^n - 40 2^n + 3 n + 37 / 3, {n, 0, 30}] (* Vincenzo Librandi, Apr 19 2015 *)
PROG
(PARI) a(n)=128/3*4^n-40*2^n+3*n+37/3 \\ Charles R Greathouse IV, Dec 09 2011
(Magma) [128/3*4^n-40*2^n+3*n+37/3: n in [0..30]]; // Vincenzo Librandi, Apr 19 2015
CROSSREFS
Two kinds of calls: A304370, A304371.
Sequence in context: A041426 A278781 A275644 * A293263 A202255 A243212
KEYWORD
nonn,easy
AUTHOR
Jeff Medha (medha_jeff(AT)yahoo.co.in), Sep 12 2002
EXTENSIONS
Edited by Pab Ter (pabrlos(AT)yahoo.com), May 29 2004
More terms from Vincenzo Librandi, Apr 19 2015
STATUS
approved