OFFSET
0,1
COMMENTS
The Ackermann function is defined recursively for nonnegative integers m,n by: ack(0,n) = n + 1 if m=0; ack(m,0) = ack(m-1,1) if m>0 and n=0; ack(m,n) = ack(m-1,ack(m,n-1)) otherwise.
LINKS
Gert Bultman, Ackermann function.
Y. Sundblad, The Ackermann function. A theoretical, computational and formula manipulative study, Nordisk Tidskr. Informationsbehandling (BIT) 11 (1971), 107-119.
Eric Weisstein's World of Mathematics, Ackermann function.
Wikipedia, Ackermann function.
Index entries for linear recurrences with constant coefficients, signature (8,-21,22,-8).
FORMULA
G.f.: (15-14*x+8*x^2)/((4*x-1)*(2*x-1)*(x-1)^2); recurrence: a(n) = 8*a(n-1)-21*a(n-2)+22*a(n-3)-8*a(n-4); a(n) = 128/3*4^n-40*2^n+3*n+37/3 for n>=0. - Pab Ter (pabrlos(AT)yahoo.com), May 29 2004
a(n) ~ 128/3*4^n. [Charles R Greathouse IV, Dec 09 2011]
MATHEMATICA
Table[128 / 3 4^n - 40 2^n + 3 n + 37 / 3, {n, 0, 30}] (* Vincenzo Librandi, Apr 19 2015 *)
PROG
(PARI) a(n)=128/3*4^n-40*2^n+3*n+37/3 \\ Charles R Greathouse IV, Dec 09 2011
(Magma) [128/3*4^n-40*2^n+3*n+37/3: n in [0..30]]; // Vincenzo Librandi, Apr 19 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jeff Medha (medha_jeff(AT)yahoo.co.in), Sep 12 2002
EXTENSIONS
Edited by Pab Ter (pabrlos(AT)yahoo.com), May 29 2004
More terms from Vincenzo Librandi, Apr 19 2015
STATUS
approved