login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of function calls required to compute ack(3,n), where ack denotes the Ackermann function.
5

%I #22 Sep 08 2022 08:45:07

%S 15,106,541,2432,10307,42438,172233,693964,2785999,11164370,44698325,

%T 178875096,715664091,2862983902,11452590817,45811673828,183249316583,

%U 733002509034,2932020521709,11728103058160,46912454175475,187649900587766,750599770123001,3002399416036092

%N Number of function calls required to compute ack(3,n), where ack denotes the Ackermann function.

%C The Ackermann function is defined recursively for nonnegative integers m,n by: ack(0,n) = n + 1 if m=0; ack(m,0) = ack(m-1,1) if m>0 and n=0; ack(m,n) = ack(m-1,ack(m,n-1)) otherwise.

%H Gert Bultman, <a href="http://hosting.xi-alles.nl/GertBultman/CS/recursion_ackermann.html">Ackermann function</a>.

%H Y. Sundblad, <a href="http://dx.doi.org/10.1007/BF01935330">The Ackermann function. A theoretical, computational and formula manipulative study</a>, Nordisk Tidskr. Informationsbehandling (BIT) 11 (1971), 107-119.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AckermannFunction.html">Ackermann function</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Ackermann_function">Ackermann function</a>.

%H <a href="/index/Ab#Ackermann">Index entries for sequences related to Ackermann function</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-21,22,-8).

%F G.f.: (15-14*x+8*x^2)/((4*x-1)*(2*x-1)*(x-1)^2); recurrence: a(n) = 8*a(n-1)-21*a(n-2)+22*a(n-3)-8*a(n-4); a(n) = 128/3*4^n-40*2^n+3*n+37/3 for n>=0. - Pab Ter (pabrlos(AT)yahoo.com), May 29 2004

%F a(n) ~ 128/3*4^n. [_Charles R Greathouse IV_, Dec 09 2011]

%t Table[128 / 3 4^n - 40 2^n + 3 n + 37 / 3, {n, 0, 30}] (* _Vincenzo Librandi_, Apr 19 2015 *)

%o (PARI) a(n)=128/3*4^n-40*2^n+3*n+37/3 \\ _Charles R Greathouse IV_, Dec 09 2011

%o (Magma) [128/3*4^n-40*2^n+3*n+37/3: n in [0..30]]; // _Vincenzo Librandi_, Apr 19 2015

%Y Two kinds of calls: A304370, A304371.

%K nonn,easy

%O 0,1

%A Jeff Medha (medha_jeff(AT)yahoo.co.in), Sep 12 2002

%E Edited by Pab Ter (pabrlos(AT)yahoo.com), May 29 2004

%E More terms from _Vincenzo Librandi_, Apr 19 2015