login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202255
Number of zero-sum -n..n arrays of 5 elements with adjacent element differences also in -n..n
1
15, 107, 397, 1077, 2385, 4643, 8211, 13533, 21091, 31461, 45241, 63135, 85861, 114251, 149145, 191501, 242277, 302561, 373433, 456105, 551777, 661793, 787469, 930277, 1091655, 1273201, 1476475, 1703201, 1955057, 2233899, 2541525, 2879915
OFFSET
1,1
COMMENTS
Row 5 of A202252
LINKS
FORMULA
Empirical: a(n) = a(n-1) +a(n-2) -a(n-5) -a(n-6) -a(n-7) +a(n-8) +a(n-9) +a(n-10) -a(n-13) -a(n-14) +a(n-15).
Empirical: G.f. -x*(15 +92*x +275*x^2 +573*x^3 +911*x^4 +1196*x^5 +1305*x^6 +1198*x^7 +913*x^8 +574*x^9 +275*x^10 +91*x^11 +13*x^12 +x^14) / ( (1+x+x^2) *(x^4+x^3+x^2+x+1) *(x^2+1) *(1+x)^2 *(x-1)^5 ). - R. J. Mathar, Dec 15 2011
EXAMPLE
Some solutions for n=10
.-3....5....0...-6....3....4....4...-6....1....7....4...-5...-2....4...-4...-3
.-3...-3...-9...-5...10....4....3...-4....5....0....5....1....4...-3....3....1
.-7....4....0....0....1...-1...-4....4...-2...-2....3....5....5....5....5....1
..3...-3....7...10...-5...-7...-6...-1...-3...-5...-3...-3...-1....1....3....1
.10...-3....2....1...-9....0....3....7...-1....0...-9....2...-6...-7...-7....0
CROSSREFS
Sequence in context: A275644 A074877 A293263 * A243212 A365929 A232124
KEYWORD
nonn
AUTHOR
R. H. Hardin Dec 14 2011
STATUS
approved