login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202254
Number of zero-sum -n..n arrays of 4 elements with adjacent element differences also in -n..n.
2
7, 31, 81, 171, 309, 509, 779, 1133, 1579, 2131, 2797, 3591, 4521, 5601, 6839, 8249, 9839, 11623, 13609, 15811, 18237, 20901, 23811, 26981, 30419, 34139, 38149, 42463, 47089, 52041, 57327, 62961, 68951, 75311, 82049, 89179, 96709, 104653, 113019
OFFSET
1,1
COMMENTS
Row 4 of A202252.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
Conjectures from Colin Barker, Mar 03 2018: (Start)
G.f.: x*(7 + 10*x + 2*x^2 + 4*x^3 - x^4) / ((1 - x)^4*(1 + x)).
a(n) = (22*n^3 + 33*n^2 + 26*n + 12) / 12 for n even.
a(n) = (22*n^3 + 33*n^2 + 26*n + 3) / 12 for n odd.
(End)
EXAMPLE
Some solutions for n=10:
1 -1 1 -7 -7 -5 5 0 2 -6 4 -2 -2 9 -3 -9
5 -8 7 1 1 -3 1 -5 -1 -2 6 3 1 1 1 1
-1 1 1 6 5 1 -4 1 -2 8 0 4 -4 0 6 0
-5 8 -9 0 1 7 -2 4 1 0 -10 -5 5 -10 -4 8
CROSSREFS
Cf. A202252.
Sequence in context: A107005 A201477 A164621 * A305290 A262012 A118934
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 14 2011
STATUS
approved