login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305290
Numbers k such that 4*k + 1 is a perfect cube, sorted by absolute values.
2
0, -7, 31, -86, 182, -333, 549, -844, 1228, -1715, 2315, -3042, 3906, -4921, 6097, -7448, 8984, -10719, 12663, -14830, 17230, -19877, 22781, -25956, 29412, -33163, 37219, -41594, 46298, -51345, 56745, -62512, 68656, -75191, 82127, -89478, 97254, -105469, 114133, -123260, 132860
OFFSET
1,2
FORMULA
G.f.: x^2*(-7 + 10*x - 7*x^2)/((1 - x)*(1 + x)^4).
a(n) = -3*a(n-1) - 2*a(n-2) + 2*a(n-3) + 3*a(n-4) + a(n-5).
a(n) = (-1 - A016755(n-1)*(-1)^n)/4.
a(n) + a(-n) = (-1)^n*2^((1-(-1)^n)/2).
(n - 2)*(4*n^2 - 16*n + 19)*a(n) + (12*n^2 - 36*n + 31)*a(n-1) - (n - 1)*(4*n^2 - 8*n + 7)*a(n-2) = 0.
From Colin Barker, May 30 2018: (Start)
a(n) = n*(4*n^2 + 6*n + 3)/2 for n even.
a(n) = -(n + 1)*(4*n^2 + 2*n + 1)/2 for n odd.
(End)
MAPLE
seq(coeff(series(x^2*(-7+10*x-7*x^2)/((1-x)*(1+x)^4), x, 50), x, n), n=1..45); # Muniru A Asiru, May 31 2018
MATHEMATICA
LinearRecurrence[{-3, -2, 2, 3, 1}, {0, -7, 31, -86, 182}, 45] (* Jean-François Alcover, Jun 04 2018 *)
PROG
(PARI) concat(0, Vec(-x^2*(7 - 10*x + 7*x^2) / ((1 - x)*(1 + x)^4) + O(x^40))) \\ Colin Barker, Jun 04 2018
CROSSREFS
Cf. A016755.
Cf. A000290: k such that 4*k is a square.
Cf. A002378: k such that 4*k+1 is a square.
Cf. A033431: k such that 4*k is a nonnegative cube.
Cf. A305291: k such that 4*k+3 is a cube.
Cf. A141046: k such that 4*k is a fourth power.
Cf. 4*A219086: k such that 4*k+1 is a fourth power.
Sequence in context: A201477 A164621 A202254 * A262012 A118934 A118935
KEYWORD
sign,easy
AUTHOR
Bruno Berselli, May 29 2018
STATUS
approved