login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262012
G.f.: [ Sum_{n>=0} (4*n)!/(n!)^4 * x^(4*n)/(1-x)^(4*n+4) ]^(1/4).
2
1, 1, 1, 1, 7, 31, 91, 211, 997, 5941, 27181, 97021, 369907, 1809211, 9180991, 40941031, 170062027, 753752971, 3645183691, 17473250251, 79444369189, 356738879533, 1662097580353, 7957682872873, 37696688946691, 175245959453491, 816849622436251, 3873243058472971, 18507865654295389
OFFSET
0,5
FORMULA
G.f. satisfies: A(x) = 1/(1-x) * Sum_{n>=0} A262013(n) * (x*A(x))^(4*n).
G.f.: A(x) = (1/x) * Series_Reversion( x / (G(x^4) + x) ) where G(x) is the g.f. of A262013.
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + 7*x^4 + 31*x^5 + 91*x^6 + 211*x^7 +...
such that
A(x)^4 = 1/(1-x)^4 + 24*x^4/(1-x)^8 + 2520*x^8/(1-x)^12 + 369600*x^12/(1-x)^16 + 63063000*x^16/(1-x)^20 + 11732745024*x^20/(1-x)^24 +...+ (4*n)!/(n!)^4*x^(4*n)/(1-x)^(4*n+4) +...
explicitly,
A(x)^4 = 1 + 4*x + 10*x^2 + 20*x^3 + 59*x^4 + 248*x^5 + 948*x^6 + 3000*x^7 + 10605*x^8 + 49468*x^9 + 238030*x^10 +...
Also, we have the series
x/Series_Reversion(x*A(x)) = 1+x + 6*x^4 + 432*x^8 + 45960*x^12 + 5780034*x^16 + 797957244*x^20 + 116916528960*x^24 + 17852845828752*x^28 + 2810058672255120*x^32 + 452703723158137776*x^36 + 74282858140993920000*x^40 +...+ A262013(n)*x^(4*n) +...
so that
A(x)*(1-x) = 1 + 6*x^4*A(x)^4 + 432*x^8*A(x)^8 + 45960*x^12*A(x)^12 + 5780034*x^16*A(x)^16 +...+ A262013(n)*(x*A(x))^(4*n) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^(4*m)/(1-x +x*O(x^n))^(4*m+4)*(4*m)!/(m!)^4)^(1/4), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A262013.
Sequence in context: A164621 A202254 A305290 * A118934 A118935 A226838
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 11 2015
STATUS
approved