login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A262011
a(n) = (1/n!) * Product_{k=1..n} (k^3 + 1).
1
1, 2, 9, 84, 1365, 34398, 1244061, 61136712, 3920391657, 317987323290, 31830531061329, 3854387943062748, 555353062796290941, 93897387078942114486, 18410594823692578876005, 4143611208319076419026192, 1061023445030203505546894289, 306698188757554119191614031538, 99387251945711843180260258108953
OFFSET
0,2
COMMENTS
Logarithmic derivative equals A262003.
FORMULA
a(n) = (n+1) * Product_{k=1..n} (k^2 - k + 1).
a(n) = (n+1) * A130032(n).
MATHEMATICA
Table[1/n! Product[k^3+1, {k, n}], {n, 0, 20}] (* Harvey P. Dale, Jul 19 2019 *)
PROG
(PARI) {a(n)=prod(k=1, n, (k^3+1))/n!}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A086929 A193466 A354310 * A120959 A125797 A068595
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 08 2015
STATUS
approved