OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..150
FORMULA
E.g.f.: Sum_{n>=0} (x/2)^n * exp(-n*(n+1)*x/2) * Product_{k=1..n} (1 + exp(2*k*x)).
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 84*x^4/4! + 965*x^5/5! + 12750*x^6/6! + 225967*x^7/7! +...
where
A(x) = 1 + x*cosh(x) + x^2*cosh(x)*cosh(2*x) + x^3*cosh(x)*cosh(2*x)*cosh(3*x) + x^4*cosh(x)*cosh(2*x)*cosh(3*x)*cosh(4*x) +...
Also,
A(x) = 1 + x*exp(-x)*(1+exp(2*x))/2 + x^2*exp(-3*x)*(1+exp(2*x))*(1+exp(4*x))/2^2 + x^3*exp(-6*x)*(1+exp(2*x))*(1+exp(4*x))*(1+exp(6*x))/2^3 +...
PROG
(PARI) {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, x^m*prod(k=1, m, cosh(k*X))); n!*polcoeff(Egf, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 27 2011
STATUS
approved