OFFSET
0,3
LINKS
Ilia Gaiur, Vladimir Rubtsov, and Duco van Straten, Product formulas for the Higher Bessel functions, arXiv:2405.03015 [math.AG], 2024. See p. 18.
EXAMPLE
Triangle begins:
1;
1, 11, 11, 1;
1, 72, 603, 1168, 603, 72, 1;
1, 243, 6750, 49682, 128124, 128124, 49682, 6750, 243, 1;
1, 608, 40136, 724320, 4961755, 15018688, 21571984, 15018688, 4961755, 724320, 40136, 608, 1;
1, 1275, 167475, 6021225, 84646275, 554083761, 1858142825, 3363309675, 3363309675, 1858142825, 554083761, 84646275, 6021225, 167475, 1275, 1;
1, 2376, 554931, 35138736, 879018750, 10490842656, 66555527346, 239677178256, 509723668476, 654019630000, 509723668476, 239677178256, 66555527346, 10490842656, 879018750, 35138736, 554931, 2376, 1;
...
Row g.f.s begin:
n=0: (1) = (1-x) * (1 + x + x^2 + x^3 + x^4 +...);
n=1: (1 + 11*x + 11*x^2 + x^3) = (1-x)^5 * (1 + 2^4*x + 3^4*x^2 + 4^4*x^3 + 5^4*x^4 + 6^4*x^5 +...);
n=2: (1 + 72*x + 603*x^2 + 1168*x^3 + 603*x^4 + 72*x^5 + x^6) = (1-x)^9 * (1 + 3^4*x + 6^4*x^2 + 10^4*x^3 + 15^4*x^5 + 21^4*x^6 +...);
n=3: (1 + 243*x + 6750*x^2 + 49682*x^3 + 128124*x^4 + 128124*x^5 + 49682*x^6 + 6750*x^7 + 243*x^8 + x^9) = (1-x)^13 * (1 + 4^4*x + 10^4*x^2 + 20^4*x^3 + 35^4*x^4 + 56^4*x^5 + 84^4*x^6 +...);
...
PROG
(PARI) {T(n, k)=polcoeff(sum(j=0, n+k, binomial(n+j, j)^4*x^j)*(1-x)^(4*n+1), k)}
for(n=0, 10, for(k=0, 3*n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Sep 10 2015
STATUS
approved