login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262014
Triangle in which the g.f. for row n is (1-x)^(4*n+1) * Sum_{j>=0} binomial(n+j-1,j)^4 * x^j, read by rows of k=0..3*n terms.
2
1, 1, 11, 11, 1, 1, 72, 603, 1168, 603, 72, 1, 1, 243, 6750, 49682, 128124, 128124, 49682, 6750, 243, 1, 1, 608, 40136, 724320, 4961755, 15018688, 21571984, 15018688, 4961755, 724320, 40136, 608, 1, 1, 1275, 167475, 6021225, 84646275, 554083761, 1858142825, 3363309675, 3363309675, 1858142825, 554083761, 84646275, 6021225, 167475, 1275, 1, 1, 2376, 554931, 35138736, 879018750, 10490842656, 66555527346, 239677178256, 509723668476, 654019630000, 509723668476
OFFSET
0,3
LINKS
Ilia Gaiur, Vladimir Rubtsov, and Duco van Straten, Product formulas for the Higher Bessel functions, arXiv:2405.03015 [math.AG], 2024. See p. 18.
FORMULA
Row sums form A008977(n) = (4*n)!/(n!)^4.
T(n,1) = A258402(n) = (n^2 + 4*n + 6) * n^2.
EXAMPLE
Triangle begins:
1;
1, 11, 11, 1;
1, 72, 603, 1168, 603, 72, 1;
1, 243, 6750, 49682, 128124, 128124, 49682, 6750, 243, 1;
1, 608, 40136, 724320, 4961755, 15018688, 21571984, 15018688, 4961755, 724320, 40136, 608, 1;
1, 1275, 167475, 6021225, 84646275, 554083761, 1858142825, 3363309675, 3363309675, 1858142825, 554083761, 84646275, 6021225, 167475, 1275, 1;
1, 2376, 554931, 35138736, 879018750, 10490842656, 66555527346, 239677178256, 509723668476, 654019630000, 509723668476, 239677178256, 66555527346, 10490842656, 879018750, 35138736, 554931, 2376, 1;
...
Row g.f.s begin:
n=0: (1) = (1-x) * (1 + x + x^2 + x^3 + x^4 +...);
n=1: (1 + 11*x + 11*x^2 + x^3) = (1-x)^5 * (1 + 2^4*x + 3^4*x^2 + 4^4*x^3 + 5^4*x^4 + 6^4*x^5 +...);
n=2: (1 + 72*x + 603*x^2 + 1168*x^3 + 603*x^4 + 72*x^5 + x^6) = (1-x)^9 * (1 + 3^4*x + 6^4*x^2 + 10^4*x^3 + 15^4*x^5 + 21^4*x^6 +...);
n=3: (1 + 243*x + 6750*x^2 + 49682*x^3 + 128124*x^4 + 128124*x^5 + 49682*x^6 + 6750*x^7 + 243*x^8 + x^9) = (1-x)^13 * (1 + 4^4*x + 10^4*x^2 + 20^4*x^3 + 35^4*x^4 + 56^4*x^5 + 84^4*x^6 +...);
...
PROG
(PARI) {T(n, k)=polcoeff(sum(j=0, n+k, binomial(n+j, j)^4*x^j)*(1-x)^(4*n+1), k)}
for(n=0, 10, for(k=0, 3*n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A008977 (row sums), A262015 (diagonal), A202750, A258402.
Cf. A181544 (triangle variant).
Sequence in context: A356602 A014459 A046609 * A287288 A287979 A268915
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Sep 10 2015
STATUS
approved