login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202750 Triangle T(n,k) = binomial(n,k)^4 read by rows, 0<=k<=n. 4
1, 1, 1, 1, 16, 1, 1, 81, 81, 1, 1, 256, 1296, 256, 1, 1, 625, 10000, 10000, 625, 1, 1, 1296, 50625, 160000, 50625, 1296, 1, 1, 2401, 194481, 1500625, 1500625, 194481, 2401, 1, 1, 4096, 614656, 9834496, 24010000, 9834496, 614656, 4096, 1, 1, 6561, 1679616 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Zhi-Wei Sun has conjectures related to the arithmetic mean of the polynomials formed from the rows of this sequence.

LINKS

Vincenzo Librandi, Rows n = 1..21, flattened

Zhi-Wei Sun, Conjectures and results on x^2 mod p^2 with 4p=x^2+dy^2 (2011).

EXAMPLE

Interpreted as polynomials:

1

x + 1

x^2 + 16*x + 1

x^3 + 81*x^2 + 81*x + 1

x^4 + 256*x^3 + 1296*x^2 + 256*x + 1

x^5 + 625*x^4 + 10000*x^3 + 10000*x^2 + 625*x + 1

PROG

(PARI) for(n=0, 9, for(k=0, n, print1(binomial(n, k)^4", ")))

CROSSREFS

Cf. A007318.

Sequence in context: A133824 A154228 A141697 * A177823 A142462 A203397

Adjacent sequences:  A202747 A202748 A202749 * A202751 A202752 A202753

KEYWORD

nonn,easy,tabl

AUTHOR

Charles R Greathouse IV, Dec 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 11:07 EST 2016. Contains 278776 sequences.