login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133824
Triangle whose rows are sequences of increasing and decreasing fourth powers: 1; 1,16,1; 1,16,81,16,1; ... .
4
1, 1, 16, 1, 1, 16, 81, 16, 1, 1, 16, 81, 256, 81, 16, 1, 1, 16, 81, 256, 625, 256, 81, 16, 1, 1, 16, 81, 256, 625, 1296, 625, 256, 81, 16, 1, 1, 16, 81, 256, 625, 1296, 2401, 1296, 625, 256, 81, 16, 1, 1, 16, 81, 256, 625, 1296, 2401, 4096, 2401, 1296, 625, 256, 81, 16
OFFSET
0,3
COMMENTS
Reading the triangle by rows produces the sequence 1,1,16,1,1,16,81,16,1,..., analogous to A004737.
From - Boris Putievskiy, Jan 13 2013: (Start)
The order of the list T(n,k) is by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1).
Row number k contains 2*k-1 numbers 1,16,...,(k-1)^4,k^4,(k-1)^4,...,16,1. (End)
LINKS
FORMULA
O.g.f.: (1+qx)(1+11qx+11q^2x^2+q^3x^3)/((1-x)(1-qx)^4(1-q^2x)) = 1 + x(1 + 16q + q^2) + x^2(1 + 16q + 81q^2 + 16q^3 + q^4) + ... . Cf. 4th row of A008292.
From Boris Putievskiy, Jan 13 2013: (Start)
T(n,k) = min(n,k)^4.
a(n) = (A004737(n))^4.
a(n) = (A124258(n))^2.
a(n) = (floor(sqrt(n-1)) - |n- floor(sqrt(n-1))^2- floor(sqrt(n-1))-1| +1)^4. (End)
EXAMPLE
Triangle starts:
1;
1, 16, 1;
1, 16, 81, 16, 1;
1, 16, 81, 256, 81, 16, 1;
...
From Boris Putievskiy, Jan 13 2013: (Start)
The start of the sequence as table:
1...1...1...1...1.. .1...
1..16..16..16..16...16...
1..16..81..81..81...81...
1..16..81.256.256..256...
1..16..81.256.625..625...
1..16..81.256.625.1296...
...
(End)
MATHEMATICA
p4[n_]:=Module[{c=Range[n]^4}, Join[c, Rest[Reverse[c]]]]; Flatten[p4/@ Range[10]] (* Harvey P. Dale, Dec 08 2014 *)
CROSSREFS
Sequence in context: A245980 A040256 A245910 * A154228 A141697 A202750
KEYWORD
easy,nonn,tabf
AUTHOR
Peter Bala, Sep 25 2007
STATUS
approved