login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133826
Triangle whose rows are sequences of increasing and decreasing tetrahedral numbers: 1; 1,4,1; 1,4,10,4,1; ... .
2
1, 1, 4, 1, 1, 4, 10, 4, 1, 1, 4, 10, 20, 10, 4, 1, 1, 4, 10, 20, 35, 20, 10, 4, 1, 1, 4, 10, 20, 35, 56, 35, 20, 10, 4, 1, 1, 4, 10, 20, 35, 56, 84, 56, 35, 20, 10, 4, 1, 1, 4, 10, 20, 35, 56, 84, 120, 84, 56, 35, 20, 10, 4, 1, 1, 4, 10, 20, 35, 56, 84, 120, 165, 120, 84, 56, 35, 20, 10, 4, 1
OFFSET
0,3
COMMENTS
Reading the triangle by rows produces the sequence 1,1,4,1,1,4,10,4,1,..., analogous to A004737.
T(n,k) = min(n*(n+1)*(n+2)/6, k*(k+1)*(k+2)/6) n, k > 0. The order of the list T(n,k) is by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). - Boris Putievskiy, Jan 13 2013
LINKS
Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
FORMULA
O.g.f.: (1+q*x)/((1-x)*(1-q*x)^3*(1-q^2x)) = 1 + x*(1 + 4*q + q^2) + x^2*(1 + 4*q + 10*q^2 + 4*q^3 + q^4) + ... .
From Boris Putievskiy, Jan 13 2013: (Start)
a(n) = A004737(n)*(A004737(n)+1)*(A004737(n)+2)/2.
a(n) = z*(z+1)*(z+2)/6, where z = floor(sqrt(n-1)) - |n - floor(sqrt(n-1))^2 - floor(sqrt(n-1)) - 1| + 1. (End)
EXAMPLE
Triangle T(n,k) starts:
1;
1, 4, 1;
1, 4, 10, 4, 1;
1, 4, 10, 20, 10, 4, 1;
1, 4, 10, 20, 35, 20, 10, 4, 1;
1, 4, 10, 20, 35, 56, 35, 20, 10, 4, 1;
1, 4, 10, 20, 35, 56, 84, 56, 35, 20, 10, 4, 1;
...
MAPLE
T:= n-> (f-> (f(i)$i=1..n, f(n-i)$i=1..n-1))(t-> t*(t+1)*(t+2)/6):
seq(T(n), n=1..10); # Alois P. Heinz, Feb 17 2022
MATHEMATICA
Module[{nn=10, tet}, tet=Table[(n(n+1)(n+2))/6, {n, nn}]; Table[Join[Take[ tet, k], Reverse[ Take[tet, k-1]]], {k, nn}]]//Flatten (* Harvey P. Dale, Oct 22 2017 *)
Table[Series[(1-h^(2*N+4))^2/(1-h^2)^4-((2+N)^2 *h^(2N+2))/(1-h^2)^2, {h, 0, 4*N}], {N, 0, 5}] // Normal (* Sergii Voloshyn, Sep 09 2022 *)
CROSSREFS
Cf. A000292, A002415 (row sums), A004737, A124258, A133825.
Sequence in context: A269845 A124258 A001638 * A209565 A122185 A350000
KEYWORD
easy,nonn,tabf
AUTHOR
Peter Bala, Sep 25 2007
STATUS
approved