OFFSET
1,3
COMMENTS
Inspired by A268317, but change to n+1 X n instead of Fib(n+1) X Fib(n).
LINKS
Kival Ngaokrajang, Illustration of initial terms, Row sum
FORMULA
T(n,k) = (k/2+1/2)^2 if odd-k, T(n,k) = (n-k/2)^2 if even-k; n >= 1, k = 0..2*n-1.
EXAMPLE
Irregular triangle begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 1, 1
2 4, 1, 1, 4
3 9, 1, 4, 4, 1, 9
4 16, 1, 9, 4, 4, 9, 1, 16
5 25, 1, 16, 4, 9, 9, 4, 16, 1, 25
6 36, 1, 25, 4, 16, 9, 9, 16, 4, 25, 1, 36
7 49, 1, 36, 4, 25, 9, 16, 16, 9, 25, 4, 36, 1, 49
8 64, 1, 49, 4, 36, 9, 25, 16, 16, 25, 9, 36, 4, 49, 1, 64
...
MATHEMATICA
Table[If[OddQ@ k, (k/2 + 1/2)^2, (n - k/2)^2], {n, 8}, {k, 0, 2 n - 1}] // Flatten (* Michael De Vlieger, Apr 01 2016 *)
PROG
(PARI) for (n = 1, 20, for (k = 0, 2*n-1, if (Mod(k, 2)==0, t = (n-k/2)^2, t = (k/2+1/2)^2); print1(t, ", ")))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Kival Ngaokrajang, Mar 06 2016
STATUS
approved