OFFSET
1,5
COMMENTS
Penultimate number in row n is (n-1)^2, for n>1.
Combinatorial limit of row n satisfies linear recurrence
r(n)=4*r(n-1)-r(n-2) with r(1)=1 and r(2)=4. For a
discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=x*u(n-1,x)+v(n-1,x),
v(n,x)=2x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
1...1
1...4....1
1...4....9....1
1...4....15...16...1
First three polynomials v(n,x): 1, 1 + x, 1 + 4x + x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209571 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209572 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 11 2012
STATUS
approved