login
A301626
Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0: T(n, k) = square of the distance from n + k*i to nearest cube of a Gaussian integer (where i denotes the root of -1 with positive imaginary part).
3
0, 0, 0, 1, 1, 1, 4, 1, 1, 4, 8, 2, 0, 2, 8, 9, 5, 1, 1, 5, 9, 4, 10, 4, 2, 4, 10, 4, 1, 5, 9, 5, 5, 9, 5, 1, 0, 2, 8, 10, 8, 10, 8, 2, 0, 1, 1, 5, 13, 13, 13, 13, 5, 1, 1, 4, 2, 4, 10, 20, 18, 20, 10, 4, 2, 4, 4, 2, 4, 9, 17, 25, 25, 17, 9, 4, 2, 4, 5, 1, 1
OFFSET
0,7
COMMENTS
The distance between two Gaussian integers is not necessarily integer, hence the use of the square of the distance.
This sequence is a complex variant of A074989.
See A301636 for the square array dealing with squares of Gaussian integers.
FORMULA
T(n, k) = T(k, n).
T(n, 0) <= A074989(n)^2.
T(n, 0) = 0 iff n is a cube (A000578).
T(n, k) = 0 iff n + k*i = z^3 for some Gaussian integer z.
EXAMPLE
Square array begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10
---+-------------------------------------------------------
0| 0 0 1 4 8 9 4 1 0 1 4 --> A301639
1| 0 1 1 2 5 10 5 2 1 2 2
2| 1 1 0 1 4 9 8 5 4 4 1
3| 4 2 1 2 5 10 13 10 9 5 2
4| 8 5 4 5 8 13 20 17 13 8 5
5| 9 10 9 10 13 18 25 25 18 13 10
6| 4 5 8 13 20 25 32 32 25 20 17
7| 1 2 5 10 17 25 32 41 34 29 26
8| 0 1 4 9 13 18 25 34 45 40 37
9| 1 2 4 5 8 13 20 29 40 53 50
10| 4 2 1 2 5 10 17 26 37 50 65
PROG
(PARI) See Links section.
CROSSREFS
Cf. A000578, A074989, A301636, A301639 (first row/column).
Sequence in context: A026998 A326812 A324893 * A080061 A246595 A209571
KEYWORD
nonn,tabl,look
AUTHOR
Rémy Sigrist, Mar 24 2018
STATUS
approved