login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0: T(n, k) = square of the distance from n + k*i to nearest cube of a Gaussian integer (where i denotes the root of -1 with positive imaginary part).
3

%I #23 Mar 27 2018 18:33:29

%S 0,0,0,1,1,1,4,1,1,4,8,2,0,2,8,9,5,1,1,5,9,4,10,4,2,4,10,4,1,5,9,5,5,

%T 9,5,1,0,2,8,10,8,10,8,2,0,1,1,5,13,13,13,13,5,1,1,4,2,4,10,20,18,20,

%U 10,4,2,4,4,2,4,9,17,25,25,17,9,4,2,4,5,1,1

%N Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0: T(n, k) = square of the distance from n + k*i to nearest cube of a Gaussian integer (where i denotes the root of -1 with positive imaginary part).

%C The distance between two Gaussian integers is not necessarily integer, hence the use of the square of the distance.

%C This sequence is a complex variant of A074989.

%C See A301636 for the square array dealing with squares of Gaussian integers.

%H Rémy Sigrist, <a href="/A301626/b301626.txt">Table of n, a(n) for n = 0..20300</a>

%H Rémy Sigrist, <a href="/A301626/a301626.png">Colored scatterplot for abs(x) <= 500 and abs(y) <= 500</a> (where the hue is function of sqrt(T(abs(x), abs(y))))

%H Rémy Sigrist, <a href="/A301626/a301626_1.png">Voronoi diagram of the cubes of Gaussian integers for abs(x) <= 500 and abs(y) <= 500</a>

%H Rémy Sigrist, <a href="/A301626/a301626_2.png">Scatterplot of (x, y) such that T(abs(x), abs(y)) is a square and abs(x) <= 500 and abs(y) <= 500</a>

%H Rémy Sigrist, <a href="/A301626/a301626.gp.txt">PARI program for A301626</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Gaussian_integer">Gaussian integer</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Voronoi_diagram">Voronoi diagram</a>

%H <a href="/index/Di#distance_to_the_nearest">Index entries for sequences related to distance to nearest element of some set</a>

%F T(n, k) = T(k, n).

%F T(n, 0) <= A074989(n)^2.

%F T(n, 0) = 0 iff n is a cube (A000578).

%F T(n, k) = 0 iff n + k*i = z^3 for some Gaussian integer z.

%e Square array begins:

%e n\k| 0 1 2 3 4 5 6 7 8 9 10

%e ---+-------------------------------------------------------

%e 0| 0 0 1 4 8 9 4 1 0 1 4 --> A301639

%e 1| 0 1 1 2 5 10 5 2 1 2 2

%e 2| 1 1 0 1 4 9 8 5 4 4 1

%e 3| 4 2 1 2 5 10 13 10 9 5 2

%e 4| 8 5 4 5 8 13 20 17 13 8 5

%e 5| 9 10 9 10 13 18 25 25 18 13 10

%e 6| 4 5 8 13 20 25 32 32 25 20 17

%e 7| 1 2 5 10 17 25 32 41 34 29 26

%e 8| 0 1 4 9 13 18 25 34 45 40 37

%e 9| 1 2 4 5 8 13 20 29 40 53 50

%e 10| 4 2 1 2 5 10 17 26 37 50 65

%o (PARI) See Links section.

%Y Cf. A000578, A074989, A301636, A301639 (first row/column).

%K nonn,tabl,look

%O 0,7

%A _Rémy Sigrist_, Mar 24 2018