login
A269847
Permutation of natural numbers: a(1) = 1, for n > 1, if n is an odd prime, a(n) = A003961(a(A000720(n))), otherwise a(n) = 2*a(n-A000720(n)).
4
1, 2, 3, 4, 5, 6, 9, 8, 10, 12, 7, 18, 15, 16, 20, 24, 25, 14, 27, 36, 30, 32, 21, 40, 48, 50, 28, 54, 45, 72, 11, 60, 64, 42, 80, 96, 75, 100, 56, 108, 35, 90, 81, 144, 22, 120, 63, 128, 84, 160, 192, 150, 135, 200, 112, 216, 70, 180, 49, 162, 33, 288, 44, 240, 126, 256, 125, 168, 320, 384, 225, 300, 105, 270, 400
OFFSET
1,2
FORMULA
a(1) = 1, and for n > 1, if n is an odd prime, a(n) = A003961(a(A000720(n))), otherwise [when n is 2 or composite] a(n) = 2*a(n-A000720(n)).
a(1) = 1; if n is an odd prime, a(n) = A003961(a(A026233(n))), else a(n) = A005843(a(A026233(n))).
Declarative definition:
a(1)=1, a(A065091(n)) = A003961(a(n+1)), a(A065090(n+1)) = 2*a(n).
As a composition of other permutations:
a(n) = A163511(A071574(n)).
Other identities. For all n >= 1:
a(A007097(n)) = A000040(n). [Maps the terms of primeth recurrence to primes.]
PROG
(Scheme, with memoization-macro definec)
(definec (A269847 n) (cond ((<= n 1) n) ((and (odd? n) (= 1 (A010051 n))) (A003961 (A269847 (A000720 n)))) (else (* 2 (A269847 (- n (A000720 n)))))))
CROSSREFS
Inverse: A269848.
Related or similar permutations: A071574, A163511, A246681, A257730, A269857.
Sequence in context: A355460 A355809 A269857 * A358522 A279407 A245705
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 06 2016
STATUS
approved