login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269847
Permutation of natural numbers: a(1) = 1, for n > 1, if n is an odd prime, a(n) = A003961(a(A000720(n))), otherwise a(n) = 2*a(n-A000720(n)).
4
1, 2, 3, 4, 5, 6, 9, 8, 10, 12, 7, 18, 15, 16, 20, 24, 25, 14, 27, 36, 30, 32, 21, 40, 48, 50, 28, 54, 45, 72, 11, 60, 64, 42, 80, 96, 75, 100, 56, 108, 35, 90, 81, 144, 22, 120, 63, 128, 84, 160, 192, 150, 135, 200, 112, 216, 70, 180, 49, 162, 33, 288, 44, 240, 126, 256, 125, 168, 320, 384, 225, 300, 105, 270, 400
OFFSET
1,2
FORMULA
a(1) = 1, and for n > 1, if n is an odd prime, a(n) = A003961(a(A000720(n))), otherwise [when n is 2 or composite] a(n) = 2*a(n-A000720(n)).
a(1) = 1; if n is an odd prime, a(n) = A003961(a(A026233(n))), else a(n) = A005843(a(A026233(n))).
Declarative definition:
a(1)=1, a(A065091(n)) = A003961(a(n+1)), a(A065090(n+1)) = 2*a(n).
As a composition of other permutations:
a(n) = A163511(A071574(n)).
Other identities. For all n >= 1:
a(A007097(n)) = A000040(n). [Maps the terms of primeth recurrence to primes.]
PROG
(Scheme, with memoization-macro definec)
(definec (A269847 n) (cond ((<= n 1) n) ((and (odd? n) (= 1 (A010051 n))) (A003961 (A269847 (A000720 n)))) (else (* 2 (A269847 (- n (A000720 n)))))))
CROSSREFS
Inverse: A269848.
Related or similar permutations: A071574, A163511, A246681, A257730, A269857.
Sequence in context: A355460 A355809 A269857 * A358522 A279407 A245705
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 06 2016
STATUS
approved