login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269848
a(1) = 1, a(2n) = A065090(1+a(n)), a(2n+1) = A000040(a(A064989(2n+1))).
4
1, 2, 3, 4, 5, 6, 11, 8, 7, 9, 31, 10, 127, 18, 13, 14, 709, 12, 5381, 15, 23, 45, 52711, 16, 17, 165, 19, 27, 648391, 21, 9737333, 22, 61, 856, 41, 20, 174440041, 6185, 197, 24, 3657500101, 34, 88362852307, 63, 29, 58644, 2428095424619, 25, 59, 26, 977, 212
OFFSET
1,2
COMMENTS
Term a(47) manually copied from A007097(15). Note that A000040(15) = 47.
FORMULA
a(1) = 1, a(2) = 2, for n > 2, if n is even, a(n) = A002808(a(n/2)-1), and for odd n, a(n) = A000040(a(A064989(n))).
As a composition of other permutations:
a(n) = A237739(A243071(n)).
Other identities. For all n >= 1:
a(A000040(n)) = A007097(n). [Maps primes to the primeth recurrence.]
PROG
(PARI)
allocatemem(2^30);
default(primelimit, 4294965247);
A002808(n) = { my(k=-1); while( -n + n += -k + k=primepi(n), ); n}; \\ This function from M. F. Hasler
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A269848 = n -> if(n<=2, n, if((n%2), prime(A269848(A064989(n))), A002808(A269848(n/2)-1)));
for(n=1, 52, t = A269848(n); print1(t, ", "); write("b269848.txt", n, " ", t));
(Scheme, with memoization-macro definec)
(definec (A269848 n) (cond ((<= n 1) n) ((even? n) (A065090 (+ 1 (A269848 (/ n 2))))) (else (A000040 (A269848 (A064989 n))))))
CROSSREFS
Inverse: A269847.
Related or similar permutations: A237739, A243071, A246682, A269858.
Sequence in context: A010350 A306581 A269858 * A245706 A072622 A072621
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 06 2016
STATUS
approved