|
|
A202749
|
|
Triangle of numerators of coefficients of the polynomial Q^(4)_m(n) defined by the recursion Q^(4)_0(n)=1; for m>=1,Q^(4)_m(n)=sum{i=1,...,n}i^4*Q^(4)_(m-1)(i). For m>=0, the denominator for all 5*m+1 terms of the m-th row is A202369(m+1)
|
|
0
|
|
|
1, 6, 15, 10, 0, -1, 0, 36, 280, 795, 900, 88, -450, -20, 200, 1, -30, 0, 19656, 311220, 1991430, 6354075, 9367722, 1283100, -10854935, -1064700, 16237338, 615615, -16336320, -136500, 8189909, 8190, -1243800, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
See comment in A175669.
|
|
LINKS
|
Table of n, a(n) for n=0..33.
|
|
FORMULA
|
Q^(4)_n(1)=1.
|
|
EXAMPLE
|
The sequence of polynomials begins
Q^(3)_0=1,
Q^(3)_1=(6*x^5+15*x^4+10*x^3-x)/30,
Q^(3)_2=(36*x^10+280*x^9+795*x^8+900*x^7+88*x^6-450*x^5-20*x^4+200*x^3+x^2-30*x)/1800.
|
|
CROSSREFS
|
Cf. A202339, A053657, A202367, A202368, A202369, A175699, A202717
Sequence in context: A289722 A351369 A070870 * A123623 A240990 A215739
Adjacent sequences: A202746 A202747 A202748 * A202750 A202751 A202752
|
|
KEYWORD
|
sign,tabf
|
|
AUTHOR
|
Vladimir Shevelev and Peter J. C. Moses, Dec 23 2011
|
|
STATUS
|
approved
|
|
|
|