login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202367 LCM of denominators of the coefficients of polynomials Q^(2)_m(n) defined by the recursion Q^(2)_0(n)=1; for m >= 1, Q^(2)_m(n) = Sum_{i=1..n} i^2*Q^(2)_(m-1)(i). 11
1, 6, 360, 45360, 5443200, 359251200, 5884534656000, 35307207936000, 144053408378880000, 1034591578977116160000, 3414152210624483328000000, 471153005066178699264000000, 15434972445968014187888640000000, 92609834675808085127331840000000, 161141112335906068121557401600000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See comment in A175669.

LINKS

Table of n, a(n) for n=1..15.

Brian Diaz, Asymptotics on a class of Legendre formulas, arXiv:2010.13645 [math.NT], 2020.

FORMULA

Conjecture: a(n) = Product_{primes p} p^(Sum_{k>=0} floor((n-1)/(ceiling((p-1)/2)*p^k))).

If the conjecture is true, then, for n >= 0, A007814(a(n+1)) = A007814(n!) + n.

CROSSREFS

Cf. A053657.

Sequence in context: A290782 A002684 A036281 * A262179 A064350 A069945

Adjacent sequences:  A202364 A202365 A202366 * A202368 A202369 A202370

KEYWORD

nonn

AUTHOR

Vladimir Shevelev and Peter J. C. Moses, Dec 18 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 16:17 EDT 2021. Contains 343884 sequences. (Running on oeis4.)