login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069945
Let M_k be the k X k matrix M_k(i,j)=1/binomial(i+n,j); then a(n)=1/det(M_(n+1)).
2
1, -6, -360, 252000, 2222640000, -258768639360000, -410299414270986240000, 9061429740221589431500800000, 2835046804394206618956825845760000000, -12733381268715468286016211650968992153600000000
OFFSET
1,2
COMMENTS
If k>n+1 det(M_k)=0
FORMULA
|a(n)| = det(M^(-1)), where M is an n X n matrix with M[i, j]=i/(i+j-1) (or j/(i+j-1)). |a(n)| = 1/det(HilbertMatrix(n))/n! = A005249(n)/n!. - Vladeta Jovovic, Jul 26 2003
|a(n)| = Product_{i=1..2n-1} binomial(i,floor(i/2)). - Peter Luschny, Sep 18 2012
|a(n)| = (Product_{i=1..2n-1} A056040(i))/n! = A163085(2*n-1)/n!. - Peter Luschny, Sep 18 2012
MATHEMATICA
a[n_] := (-1)^Quotient[n, 2]/(Det[HilbertMatrix[n]] n!); Array[a, 10] (* Jean-François Alcover, Jul 06 2019 *)
PROG
(PARI) for(n=0, 10, print1(1/matdet(matrix(n+1, n+1, i, j, 1/binomial(i+n, j))), ", "))
(Sage)
def A069945(n): return (-1)^(n//2)*mul(binomial(i, i//2) for i in (1..2*n-1))
[A069945(i) for i in (1..11)] # Peter Luschny, Sep 18 2012
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Benoit Cloitre, Apr 27 2002
STATUS
approved