OFFSET
1,2
COMMENTS
If k>n+1 det(M_k)=0
FORMULA
|a(n)| = det(M^(-1)), where M is an n X n matrix with M[i, j]=i/(i+j-1) (or j/(i+j-1)). |a(n)| = 1/det(HilbertMatrix(n))/n! = A005249(n)/n!. - Vladeta Jovovic, Jul 26 2003
|a(n)| = Product_{i=1..2n-1} binomial(i,floor(i/2)). - Peter Luschny, Sep 18 2012
MATHEMATICA
a[n_] := (-1)^Quotient[n, 2]/(Det[HilbertMatrix[n]] n!); Array[a, 10] (* Jean-François Alcover, Jul 06 2019 *)
PROG
(PARI) for(n=0, 10, print1(1/matdet(matrix(n+1, n+1, i, j, 1/binomial(i+n, j))), ", "))
(Sage)
def A069945(n): return (-1)^(n//2)*mul(binomial(i, i//2) for i in (1..2*n-1))
[A069945(i) for i in (1..11)] # Peter Luschny, Sep 18 2012
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Benoit Cloitre, Apr 27 2002
STATUS
approved