login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069945 Let M_k be the k X k matrix M_k(i,j)=1/binomial(i+n,j); then a(n)=1/det(M_(n+1)). 2
1, -6, -360, 252000, 2222640000, -258768639360000, -410299414270986240000, 9061429740221589431500800000, 2835046804394206618956825845760000000, -12733381268715468286016211650968992153600000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If k>n+1 det(M_k)=0

LINKS

Table of n, a(n) for n=1..10.

FORMULA

|a(n)| = det(M^(-1)), where M is an n X n matrix with M[i, j]=i/(i+j-1) (or j/(i+j-1)). |a(n)| = 1/det(HilbertMatrix(n))/n! = A005249(n)/n!. - Vladeta Jovovic, Jul 26 2003

|a(n)| = Product_{i=1..2n-1} binomial(i,floor(i/2)). - Peter Luschny, Sep 18 2012

|a(n)| = (Product_{i=1..2n-1} A056040(i))/n! = A163085(2*n-1)/n!. - Peter Luschny, Sep 18 2012

MATHEMATICA

a[n_] := (-1)^Quotient[n, 2]/(Det[HilbertMatrix[n]] n!); Array[a, 10] (* Jean-Fran├žois Alcover, Jul 06 2019 *)

PROG

(PARI) for(n=0, 10, print1(1/matdet(matrix(n+1, n+1, i, j, 1/binomial(i+n, j))), ", "))

(Sage)

def A069945(n): return (-1)^(n//2)*mul(binomial(i, i//2) for i in (1..2*n-1))

[A069945(i) for i in (1..11)] # Peter Luschny, Sep 18 2012

CROSSREFS

A005249, A056040.

Sequence in context: A202367 A262179 A064350 * A086205 A173608 A042759

Adjacent sequences:  A069942 A069943 A069944 * A069946 A069947 A069948

KEYWORD

easy,sign

AUTHOR

Benoit Cloitre, Apr 27 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 10:36 EDT 2021. Contains 345416 sequences. (Running on oeis4.)