OFFSET
1,4
COMMENTS
Sum_{k>=1} b(k) = exp(3/2). More generally if b(1) = b(2) = ... = b(m) = 1 and b(n+m+1) = (1/(n+m))*(b(n+m) + b(n+m-1) + ... + b(n)) then Sum_{k>=1} b(k) = exp(H(m)) where H(m) = Sum_{j=1..m} 1/j is the m-th harmonic number. [Benoit Cloitre and Boris Gourevitch]
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..840
FORMULA
Numerators in the power series of exp(x+x^2/2) (e.g.f. for involutions, cf. A000085). exp(x+x^2/2) = 1 + x + x^2 + 2/3*x^3 + 5/12*x^4 + 13/60*x^5 + 19/180*x^6 + 29/630*x^7 + 191/10080*x^8 + ... [Joerg Arndt, May 10 2008]
a(n) = numerator( A013989(n-1)/n! ). - G. C. Greubel, Aug 17 2022
MATHEMATICA
Table[Numerator[n*(-I/Sqrt[2])^(n-1)*HermiteH[n-1, I/Sqrt[2]]/n!], {n, 40}] (* G. C. Greubel, Aug 17 2022 *)
PROG
(Magma)
A013989:= func< n | (&+[Factorial(n)/(2^k*Factorial(n-2*k)*Factorial(k)): k in [0..Floor(n/2)]]) >;
[A069944(n): n in [1..40]]; // G. C. Greubel, Aug 17 2022
(SageMath)
@CachedFunction
[numerator(A013989(n-1)/factorial(n)) for n in (1..40)] # G. C. Greubel, Aug 17 2022
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Benoit Cloitre, Apr 27 2002
STATUS
approved