login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069941
Number of primes p such that n! <= p <= n! + n^2.
2
1, 3, 3, 3, 4, 5, 5, 4, 7, 7, 9, 6, 5, 8, 4, 9, 10, 14, 8, 16, 14, 14, 7, 6, 16, 12, 12, 15, 13, 12, 9, 12, 12, 17, 13, 6, 12, 18, 15, 13, 15, 17, 15, 23, 19, 12, 13, 19, 18, 22, 20, 19, 16, 17, 19, 19, 23, 20, 18, 19, 23, 24, 19, 15, 19, 20, 26, 18, 24, 22, 24, 25, 24, 16, 23
OFFSET
1,2
COMMENTS
Conjecture: if n>=2 there are at least 3 primes p such that n!<=p<=n!+n^2 (or stronger: for n>1, a(n) > log(n)). This is stronger than the conjecture described in A037151(n). Because if n!+k is prime, k composite, k=A*B, where A and B must have, each one, at least one prime factor>n (if not: A=q*A' q<=n then n!+k is divisible by q), hence k>n^2. Also stronger (but more restrictive) than the Schinzel conjecture: "for m large enough there's at least one prime p such that m <= p <= m + log(m)^2" since n^2 < log(n!)^2 for n>5.
For the n-th term we have a(n) = pi(n!+n^2) - pi(n!), where pi(x) is the prime counting function. However, pi(n!) is difficult to compute for n>25. The Prime Number Theorem states that pi(x) and Li(x), the logarithmic integral, are asymptotically equal. Hence we can approximate a(n) by Li(n!+n^2) - Li(n!). These approximate values of a(n) are plotted as the red curve in the "Theoretical versus Actual" plot. By the way, using x/log(x) as approximation for Li(x) would change the curve by at most 1 unit. - T. D. Noe, Mar 06 2010
MATHEMATICA
Table[Length[Select[Range[n!, n!+n^2], PrimeQ]], {n, 100}] (* T. D. Noe, Mar 06 2010 *)
PROG
(PARI) for(n=1, 75, print1(sum(k=n!, n!+n^2, isprime(k)), ", "))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, May 04 2002
STATUS
approved