|
|
A014085
|
|
Number of primes between n^2 and (n+1)^2.
|
|
113
|
|
|
0, 2, 2, 2, 3, 2, 4, 3, 4, 3, 5, 4, 5, 5, 4, 6, 7, 5, 6, 6, 7, 7, 7, 6, 9, 8, 7, 8, 9, 8, 8, 10, 9, 10, 9, 10, 9, 9, 12, 11, 12, 11, 9, 12, 11, 13, 10, 13, 15, 10, 11, 15, 16, 12, 13, 11, 12, 17, 13, 16, 16, 13, 17, 15, 14, 16, 15, 15, 17, 13, 21, 15, 15, 17, 17, 18, 22, 14, 18, 23, 13
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Suggested by Legendre's conjecture (still open) that for n > 0 there is always a prime between n^2 and (n+1)^2.
Legendre's conjecture may be written pi((n+1)^2) - pi(n^2) > 0 for all positive n, where pi(n) = A000720(n), [the prime counting function]. - Jonathan Vos Post, Jul 30 2008 [Comment corrected by Jonathan Sondow, Aug 15 2008]
Legendre's conjecture can be generalized as follows: for all integers n > 0 and all real numbers k > K, there is a prime in the range n^k to (n+1)^k. The constant K is conjectured to be log(127)/log(16). See A143935. - T. D. Noe, Sep 05 2008
|
|
REFERENCES
|
J. R. Goldman, The Queen of Mathematics, 1998, p. 82.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(17) = 5 because between 17^2 and 18^2, i.e., 289 and 324, there are 5 primes (which are 293, 307, 311, 313, 317).
|
|
MATHEMATICA
|
Table[PrimePi[(n + 1)^2] - PrimePi[n^2], {n, 0, 80}] (* Lei Zhou, Dec 01 2005 *)
Differences[PrimePi[Range[0, 90]^2]] (* Harvey P. Dale, Nov 25 2015 *)
|
|
PROG
|
(Haskell)
a014085 n = sum $ map a010051 [n^2..(n+1)^2]
(Python)
from sympy import primepi
def a(n): return primepi((n+1)**2) - primepi(n**2)
|
|
CROSSREFS
|
Cf. A000006, A053000, A053001, A007491, A077766, A077767, A108954, A000720, A060715, A104272, A143223, A143224, A143225, A143226, A143227.
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|