The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014085 Number of primes between n^2 and (n+1)^2. 112
 0, 2, 2, 2, 3, 2, 4, 3, 4, 3, 5, 4, 5, 5, 4, 6, 7, 5, 6, 6, 7, 7, 7, 6, 9, 8, 7, 8, 9, 8, 8, 10, 9, 10, 9, 10, 9, 9, 12, 11, 12, 11, 9, 12, 11, 13, 10, 13, 15, 10, 11, 15, 16, 12, 13, 11, 12, 17, 13, 16, 16, 13, 17, 15, 14, 16, 15, 15, 17, 13, 21, 15, 15, 17, 17, 18, 22, 14, 18, 23, 13 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Suggested by Legendre's conjecture (still open) that for n > 0 there is always a prime between n^2 and (n+1)^2. a(n) is the number of occurrences of n in A000006. - Philippe Deléham, Dec 17 2003 See the additional references and links mentioned in A143227. - Jonathan Sondow, Aug 03 2008 Legendre's conjecture may be written pi((n+1)^2) - pi(n^2) > 0 for all positive n, where pi(n) = A000720(n), [the prime counting function]. - Jonathan Vos Post, Jul 30 2008 [Comment corrected by Jonathan Sondow, Aug 15 2008] Legendre's conjecture can be generalized as follows: for all integers n > 0 and all real numbers k > K, there is a prime in the range n^k to (n+1)^k. The constant K is conjectured to be log(127)/log(16). See A143935. - T. D. Noe, Sep 05 2008 For n > 0: number of occurrences of n^2 in A145445. - Reinhard Zumkeller, Jul 25 2014 REFERENCES J. R. Goldman, The Queen of Mathematics, 1998, p. 82. LINKS T. D. Noe, Table of n, a(n) for n = 0..10000 Pierre Dusart, The k-th prime is greater than k(ln k + ln ln k-1) for k>=2, Mathematics of Computation 68: (1999), 411-415. Tsutomu Hashimoto, On a certain relation between Legendre's conjecture and Bertrand's postulate, arXiv:0807.3690 [math.GM], 2008. M. Hassani, Counting primes in the interval (n^2, (n+1)^2), arXiv:math/0607096 [math.NT], 2006. Edmund Landau, Gelöste und ungelöste Probleme aus der Theorie der Primzahlverteilung und der Riemannschen Zetafunktion. Jahresbericht der Deutschen Mathematiker-Vereinigung (1912), Vol. 21, page 208-228. Hugo Pfoertner, Lower limit of the scatter band represented as a step function. Eric Weisstein's World of Mathematics, Legendre's Conjecture Wikipedia, Legendre's conjecture FORMULA a(n) = A000720((n+1)^2) - A000720(n^2). - Jonathan Vos Post, Jul 30 2008 a(n) = Sum_{k = n^2..(n+1)^2} A010051(k). - Reinhard Zumkeller, Mar 18 2012 EXAMPLE a(17) = 5 because between 17^2 and 18^2, i.e., 289 and 324, there are 5 primes (which are 293, 307, 311, 313, 317). MATHEMATICA Table[PrimePi[(n + 1)^2] - PrimePi[n^2], {n, 0, 80}] (* Lei Zhou, Dec 01 2005 *) Differences[PrimePi[Range[0, 90]^2]] (* Harvey P. Dale, Nov 25 2015 *) PROG (PARI) a(n)=primepi((n+1)^2)-primepi(n^2) \\ Charles R Greathouse IV, Jun 15 2011 (Haskell) a014085 n = sum \$ map a010051 [n^2..(n+1)^2] -- Reinhard Zumkeller, Mar 18 2012 (Python) from sympy import primepi def a(n): return primepi((n+1)**2) - primepi(n**2) print([a(n) for n in range(81)]) # Michael S. Branicky, Jul 05 2021 CROSSREFS First differences of A038107. Cf. A000006, A053000, A053001, A007491, A077766, A077767, A108954, A000720, A060715, A104272, A143223, A143224, A143225, A143226, A143227. Cf. A010051, A061265, A221056, A000290, A145445. Counts of primes between consecutive higher powers: A060199, A061235, A062517. Cf. A333846, A349996, A349997, A349998, A349999. Sequence in context: A352631 A134446 A125749 * A248891 A171239 A029210 Adjacent sequences:  A014082 A014083 A014084 * A014086 A014087 A014088 KEYWORD nonn,nice AUTHOR Jon Wild, Jul 14 1997 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 08:03 EDT 2022. Contains 353852 sequences. (Running on oeis4.)