OFFSET
0,2
COMMENTS
Legendre's conjecture (still open) says there is always a prime between n^2 and (n+1)^2. Bertrand's postulate (actually a theorem due to Chebyshev) says there is always a prime between n and 2n.
Hashimoto's plot of (1 - a(n)) shows that |a(n)| is small compared to n for n < 30000.
From Jonathan Sondow, Aug 07 2008: (Start)
It appears that there are only a finite number of negative terms (see A143226).
If the negative terms are bounded, then Legendre's conjecture is true, at least for all sufficiently large n. This follows from the strong form of Bertrand's postulate proved by Ramanujan (see A104272 Ramanujan primes). (End)
REFERENCES
M. Aigner and C. M. Ziegler, Proofs from The Book, Chapter 2, Springer, NY, 2001.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Oxford Univ. Press, 1989, p. 19.
S. Ramanujan, Collected Papers of Srinivasa Ramanujan (G. H. Hardy, S. Aiyar, P. Venkatesvara and B. M. Wilson, eds.), Amer. Math. Soc., Providence, 2000, pp. 208-209.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
T. Hashimoto, On a certain relation between Legendre's conjecture and Bertrand's postulate, arXiv:0807.3690 [math.GM], 2008.
M. Hassani, Counting primes in the interval (n^2,(n+1)^2), arXiv:math/0607096 [math.NT], 2006.
T. D. Noe, Plot of A143223(n) for n to 10^6
J. Pintz, Landau's problems on primes
S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
J. Sondow and E. W. Weisstein, Bertrand's Postulate in MathWorld
J. Sondow, Ramanujan Prime in MathWorld
E. W. Weisstein, Legendre's Conjecture in MathWorld
FORMULA
EXAMPLE
There are 4 primes between 6^2 and 7^2 and 2 primes between 6 and 2*6, so a(6) = 4 - 2 = 2.
a(1) = 2 because there are two primes between 1^2 and 2^2 (namely, 2 and 3) and none between 1 and 2. [Jonathan Sondow, Aug 07 2008]
MATHEMATICA
L={0, 2}; Do[L=Append[L, (PrimePi[(n+1)^2]-PrimePi[n^2]) - (PrimePi[2n]-PrimePi[n])], {n, 2, 100}]; L
PROG
(PARI) a(n)=sum(k=n^2+1, n^2+2*n, isprime(k))-sum(k=n+1, 2*n, isprime(k)) \\ Charles R Greathouse IV, May 30 2014
CROSSREFS
KEYWORD
sign
AUTHOR
Jonathan Sondow, Jul 31 2008
EXTENSIONS
Corrected by Jonathan Sondow, Aug 07 2008, Aug 09 2008
STATUS
approved