OFFSET
0,32
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..65536
R. Stephan, Some divide-and-conquer sequences ...
R. Stephan, Table of generating functions
FORMULA
a(2n) = a(n), a(2n+1) = a(n) + [n congruent to 7 mod 8]. - Ralf Stephan, Aug 21 2003
G.f.: 1/(1-x) * sum(k>=0, t^15(1-t)/(1-t^16), t=x^2^k). - Ralf Stephan, Sep 08 2003
a(n) <= log_2(n+1) - 3 for n >= 7. - Charles R Greathouse IV, Jan 21 2016
EXAMPLE
a(63) = 3 as 63 = 111111 in binary and 1111 occurs three times (different occurrences may overlap). - Antti Karttunen, Jul 24 2017
MAPLE
See A014081.
MATHEMATICA
Table[SequenceCount[IntegerDigits[n, 2], {1, 1, 1, 1}, Overlaps->True], {n, 0, 100}] (* The program uses the SequenceCount function from Mathematica version 10 *) (* Harvey P. Dale, Sep 25 2015 *)
PROG
(PARI) u1111(n)=my(v=binary(n)); sum(k=1, #v-3, v[k]&&v[k+1]&&v[k+2]&&v[k+3])
(PARI) a(n)=my(s, t); while(n, n>>=valuation(n, 2); t=valuation(n+1, 2); s+=max(t-3, 0); n>>=t); s \\ Charles R Greathouse IV, Jan 21 2016
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
EXTENSIONS
Term a(0)=0 prepended and more terms from Antti Karttunen, Jul 24 2017
STATUS
approved