login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014083
Occurrences of '1111' in binary expansion of n.
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,32
FORMULA
a(2n) = a(n), a(2n+1) = a(n) + [n congruent to 7 mod 8]. - Ralf Stephan, Aug 21 2003
G.f.: 1/(1-x) * sum(k>=0, t^15(1-t)/(1-t^16), t=x^2^k). - Ralf Stephan, Sep 08 2003
a(n) <= log_2(n+1) - 3 for n >= 7. - Charles R Greathouse IV, Jan 21 2016
EXAMPLE
a(63) = 3 as 63 = 111111 in binary and 1111 occurs three times (different occurrences may overlap). - Antti Karttunen, Jul 24 2017
MAPLE
See A014081.
MATHEMATICA
Table[SequenceCount[IntegerDigits[n, 2], {1, 1, 1, 1}, Overlaps->True], {n, 0, 100}] (* The program uses the SequenceCount function from Mathematica version 10 *) (* Harvey P. Dale, Sep 25 2015 *)
PROG
(PARI) u1111(n)=my(v=binary(n)); sum(k=1, #v-3, v[k]&&v[k+1]&&v[k+2]&&v[k+3])
(PARI) a(n)=my(s, t); while(n, n>>=valuation(n, 2); t=valuation(n+1, 2); s+=max(t-3, 0); n>>=t); s \\ Charles R Greathouse IV, Jan 21 2016
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
EXTENSIONS
Term a(0)=0 prepended and more terms from Antti Karttunen, Jul 24 2017
STATUS
approved