OFFSET
1,33
COMMENTS
This table counts finite multisets of positive integers > 1 by sum and product. Compare to the triangle A318950.
FORMULA
For n <= k we have A(n,k) = A318950(k,n).
EXAMPLE
Array begins:
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12
-----------------------------------------------
n=0: 1 0 0 0 0 0 0 0 0 0 0 0
n=1: 0 0 0 0 0 0 0 0 0 0 0 0
n=2: 0 1 0 0 0 0 0 0 0 0 0 0
n=3: 0 0 1 0 0 0 0 0 0 0 0 0
n=4: 0 0 0 2 0 0 0 0 0 0 0 0
n=5: 0 0 0 0 1 1 0 0 0 0 0 0
n=6: 0 0 0 0 0 1 0 2 1 0 0 0
n=7: 0 0 0 0 0 0 1 0 0 1 0 2
n=8: 0 0 0 0 0 0 0 1 0 0 0 1
n=9: 0 0 0 0 0 0 0 0 1 0 0 0
n=10: 0 0 0 0 0 0 0 0 0 1 0 0
n=11: 0 0 0 0 0 0 0 0 0 0 1 0
n=12: 0 0 0 0 0 0 0 0 0 0 0 1
For example, the A(11,48) = 3 partitions are: (4,4,3), (4,3,2,2), (3,2,2,2,2).
Antidiagonals begin:
n+k=1: 1
n+k=2: 0 0
n+k=3: 0 0 0
n+k=4: 0 0 1 0
n+k=5: 0 0 0 0 0
n+k=6: 0 0 0 1 0 0
n+k=7: 0 0 0 0 0 0 0
n+k=8: 0 0 0 0 2 0 0 0
n+k=9: 0 0 0 0 0 0 0 0 0
n+k=10: 0 0 0 0 0 1 0 0 0 0
n+k=11: 0 0 0 0 0 1 0 0 0 0 0
n+k=12: 0 0 0 0 0 0 1 0 0 0 0 0
n+k=13: 0 0 0 0 0 0 0 0 0 0 0 0 0
n+k=14: 0 0 0 0 0 0 2 1 0 0 0 0 0 0
n+k=15: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
n+k=16: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
For example, antidiagonal n+k=14 counts the following partitions:
n=6: (42), (222)
n=7: (7)
so the 14th antidiagonal is: (0,0,0,0,0,0,2,1,0,0,0,0,0,0,0).
MATHEMATICA
nn=15;
tt=Table[Length[Select[IntegerPartitions[n], FreeQ[#, 1]&&Times@@#==k&]], {n, 0, nn}, {k, 1, nn}] (* array *)
tr=Table[tt[[j, i-j]], {i, 2, nn}, {j, i-1}] (* antidiagonals *)
Join@@tr (* sequence *)
CROSSREFS
KEYWORD
AUTHOR
Gus Wiseman, Dec 31 2024
STATUS
approved