login
A379666
Array read by antidiagonals downward where A(n,k) is the number of integer partitions of n with product k.
28
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 1, 1, 1
OFFSET
1,33
COMMENTS
Counts finite multisets of positive integers by sum and product.
EXAMPLE
Array begins:
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k10 k11 k12
-----------------------------------------------
n=0: 1 0 0 0 0 0 0 0 0 0 0 0
n=1: 1 0 0 0 0 0 0 0 0 0 0 0
n=2: 1 1 0 0 0 0 0 0 0 0 0 0
n=3: 1 1 1 0 0 0 0 0 0 0 0 0
n=4: 1 1 1 2 0 0 0 0 0 0 0 0
n=5: 1 1 1 2 1 1 0 0 0 0 0 0
n=6: 1 1 1 2 1 2 0 2 1 0 0 0
n=7: 1 1 1 2 1 2 1 2 1 1 0 2
n=8: 1 1 1 2 1 2 1 3 1 1 0 3
n=9: 1 1 1 2 1 2 1 3 2 1 0 3
n=10: 1 1 1 2 1 2 1 3 2 2 0 3
n=11: 1 1 1 2 1 2 1 3 2 2 1 3
n=12: 1 1 1 2 1 2 1 3 2 2 1 4
For example, the A(9,12) = 3 partitions are: (6,2,1), (4,3,1,1), (3,2,2,1,1).
Antidiagonals begin:
n+k=1: 1
n+k=2: 0 1
n+k=3: 0 0 1
n+k=4: 0 0 1 1
n+k=5: 0 0 0 1 1
n+k=6: 0 0 0 1 1 1
n+k=7: 0 0 0 0 1 1 1
n+k=8: 0 0 0 0 2 1 1 1
n+k=9: 0 0 0 0 0 2 1 1 1
n+k=10: 0 0 0 0 0 1 2 1 1 1
n+k=11: 0 0 0 0 0 1 1 2 1 1 1
n+k=12: 0 0 0 0 0 0 2 1 2 1 1 1
n+k=13: 0 0 0 0 0 0 0 2 1 2 1 1 1
n+k=14: 0 0 0 0 0 0 2 1 2 1 2 1 1 1
n+k=15: 0 0 0 0 0 0 1 2 1 2 1 2 1 1 1
n+k=16: 0 0 0 0 0 0 0 1 3 1 2 1 2 1 1 1
For example, antidiagonal n+k=10 counts the following partitions:
n=5: (5)
n=6: (411), (2211)
n=7: (31111)
n=8: (2111111)
n=9: (111111111)
so the 10th antidiagonal is: (0,0,0,0,0,1,2,1,1,1).
MATHEMATICA
nn=12;
tt=Table[Length[Select[IntegerPartitions[n], Times@@#==k&]], {n, 0, nn}, {k, 1, nn}] (* array *)
tr=Table[tt[[j, i-j]], {i, 2, nn}, {j, i-1}] (* antidiagonals *)
Join@@tr (* sequence *)
CROSSREFS
Row sums are A000041 = partitions of n, strict A000009, no ones A002865.
Diagonal A(n,n) is A001055(n) = factorizations of n, strict A045778.
Antidiagonal sums are A379667.
The case without ones is A379668, antidiagonal sums A379669 (zeros A379670).
The strict case is A379671, antidiagonal sums A379672.
The strict case without ones is A379678, antidiagonal sums A379679 (zeros A379680).
A316439 counts factorizations by length, partitions A008284.
A326622 counts factorizations with integer mean, strict A328966.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A379733
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133
Sequence in context: A127327 A321144 A309048 * A086072 A086009 A086010
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jan 01 2025
STATUS
approved