login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379664
Decimal expansion of hypergeom([1/2, 1/2], [1], -2).
0
7, 4, 5, 7, 4, 9, 1, 8, 7, 3, 1, 6, 3, 2, 9, 6, 0, 9, 9, 6, 2, 4, 8, 2, 0, 6, 5, 3, 5, 3, 4, 5, 1, 1, 0, 4, 3, 0, 2, 6, 7, 5, 1, 9, 7, 9, 8, 3, 2, 2, 1, 8, 6, 7, 2, 3, 3, 7, 4, 1, 3, 3, 7, 1, 0, 7, 0, 1, 0, 2, 5, 2, 0, 7, 5, 3, 5, 9, 1, 5, 2, 3, 2, 8, 6, 2, 9, 8, 9, 8, 4, 8, 2, 2, 2, 8, 2, 5, 4, 1
OFFSET
0,1
REFERENCES
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 17, page 143.
FORMULA
Equals hypergeom([1/2, 1/2], [1], 2/3)/sqrt(3).
Equals 2*EllipticK(2/3)/(Pi*sqrt(3)).
EXAMPLE
0.74574918731632960996248206535345110430267519798...
MATHEMATICA
RealDigits[Hypergeometric2F1[1/2, 1/2, 1, -2], 10, 100][[1]] (* or *)
RealDigits[Hypergeometric2F1[1/2, 1/2, 1, 2/3]/Sqrt[3], 10, 100][[1]] (* or *)
RealDigits[2EllipticK[2/3]/(Pi Sqrt[3]), 10, 100][[1]]
PROG
(PARI) hypergeom([1/2, 1/2], 1, 2/3)/sqrt(3) \\ Hugo Pfoertner, Dec 29 2024
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Stefano Spezia, Dec 29 2024
STATUS
approved