login
A379667
Number of finite multisets of positive integers with sum + product = n.
16
0, 1, 1, 1, 2, 2, 3, 3, 5, 5, 6, 7, 8, 8, 11, 12, 13, 14, 15, 17, 19, 19, 20, 22, 26, 26, 29, 30, 31, 34, 35, 36, 38, 40, 43, 46, 48, 48, 50, 53, 55, 57, 61, 62, 66, 66, 69, 73, 75, 77, 79, 82, 83, 85, 89, 91, 94, 94, 95, 103, 106, 107, 111, 113, 116, 119, 121
OFFSET
0,5
EXAMPLE
The partition (2,2,1) has sum + product equal to 5 + 4 = 9, so is counted under a(9).
The a(0) = 0 through a(8) = 5 partitions:
. () (1) (11) (2) (21) (3) (31) (4)
(111) (1111) (211) (2111) (22)
(11111) (111111) (311)
(21111)
(1111111)
MATHEMATICA
Table[Length[Select[Join@@Array[IntegerPartitions, n+1, 0], Total[#]+Times@@#==n&]], {n, 0, 30}]
CROSSREFS
Arrays counting multisets by sum and product:
- partitions: A379666, antidiagonal sums A379667 (this)
- partitions without ones: A379668, antidiagonal sums A379669 (zeros A379670)
- strict partitions: A379671, antidiagonal sums A379672
- strict partitions without ones: A379678, antidiagonal sums A379679 (zeros A379680)
Counting and ranking multisets by comparing sum and product:
- same: A001055 (strict A045778), ranks A301987
- divisible: A057567, ranks A326155
- divisor: A057568, ranks A326149, see A326156, A326172, A379733
- greater: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less: A114324, ranks A325037, see A318029
- less or equal: A319005, ranks A379721
- different: A379736, ranks A379722, see A111133
A000041 counts integer partitions, strict A000009.
A025147 counts partitions into distinct parts > 1, non-strict A002865.
A316439 counts factorizations by length, partitions A008284.
A318950 counts factorizations by sum.
A326622 counts factorizations with integer mean, strict A328966.
Sequence in context: A178503 A211275 A240542 * A342516 A325391 A179254
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 03 2025
STATUS
approved