login
A114324
Number of partitions of n with a product greater than n.
9
1, 0, 0, 0, 0, 1, 3, 6, 10, 16, 26, 39, 56, 79, 111, 150, 200, 265, 349, 453, 586, 749, 957, 1209, 1522, 1903, 2379, 2950, 3654, 4500, 5534, 6771, 8271, 10063, 12228, 14799, 17884, 21543, 25919, 31087, 37233, 44477, 53063, 63149, 75059, 89014, 105436, 124631
OFFSET
0,7
COMMENTS
The Heinz numbers of these partitions are given by A325037. - Gus Wiseman, Mar 27 2019
LINKS
Pankaj Jyoti Mahanta, On the number of partitions of n whose product of the summands is at most n, arXiv:2010.07353 [math.CO], 2020.
EXAMPLE
a(6) = 3 since there are 3 partitions of 6 with product greater than 6: {3,3}, {2,2,2}, {4,2}.
From Gus Wiseman, Mar 27 2019: (Start)
The a(5) = 1 through a(9) = 16 partitions:
(32) (33) (43) (44) (54)
(42) (52) (53) (63)
(222) (322) (62) (72)
(331) (332) (333)
(421) (422) (432)
(2221) (431) (441)
(521) (522)
(2222) (531)
(3221) (621)
(3311) (3222)
(3321)
(4221)
(4311)
(5211)
(22221)
(32211)
(End)
MATHEMATICA
<< DiscreteMath`Combinatorica`; lst=Table[Length@Select[Partitions[n], (Times @@ # > n) &], {n, 50}]
Table[Length[Select[IntegerPartitions[n], Times@@#>n&]], {n, 0, 20}] (* Gus Wiseman, Mar 27 2019 *)
KEYWORD
nonn
AUTHOR
Giovanni Resta, Feb 06 2006
EXTENSIONS
a(0) = 1 prepended by Gus Wiseman, Mar 27 2019
STATUS
approved