OFFSET
0,8
COMMENTS
Number of partitions of n into at least two distinct parts >= 2.
FORMULA
G.f.: x - 1/(1 - x) + Product_{k>=2} (1 + x^k).
a(n) = A025147(n) - 1 for n > 1.
EXAMPLE
a(9) = 4 because we have [7, 2], [6, 3], [5, 4] and [4, 3, 2].
MATHEMATICA
nmax = 60; CoefficientList[Series[Sum[x^(k (k + 3)/2)/Product[(1 - x^j), {j, 1, k}], {k, 2, nmax}], {x, 0, nmax}], x]
nmax = 60; CoefficientList[Series[x - 1/(1 - x) + 1/((1 + x) QPochhammer[x, x^2]), {x, 0, nmax}], x]
Join[{0, 0}, Table[-1 + Sum[(-1)^(n - k) PartitionsQ[k], {k, 0, n}], {n, 2, 60}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 13 2018
STATUS
approved