OFFSET
0,3
COMMENTS
LINKS
Zakir Ahmed, Nayandeep Deka Baruah, Manosij Ghosh Dastidar, New congruences modulo 5 for the number of 2-color partitions, Journal of Number Theory, Volume 157, December 2015, Pages 184-198.
FORMULA
G.f.: exp(Sum_{k>=1} x^k*(1 + x^k + x^(2*k) + 2*x^(3*k))/(k*(1 - x^(4*k)))).
a(n) ~ 5^(3/4) * exp(sqrt(5*n/6)*Pi) / (2^(13/4) * 3^(3/4) * n^(5/4)). - Vaclav Kotesovec, Aug 14 2018
EXAMPLE
a(5) = 8 because we have [5], [4, 1], [4', 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1] and [1, 1, 1, 1, 1].
MAPLE
a:=series(mul(1/((1-x^k)*(1-x^(4*k))), k=1..55), x=0, 49): seq(coeff(a, x, n), n=0..48); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 48; CoefficientList[Series[Product[1/((1 - x^k) (1 - x^(4 k))), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 48; CoefficientList[Series[1/(QPochhammer[x] QPochhammer[x^4]), {x, 0, nmax}], x]
nmax = 48; CoefficientList[Series[Exp[Sum[x^k (1 + x^k + x^(2 k) + 2*x^(3 k))/(k (1 - x^(4 k))), {k, 1, nmax}]], {x, 0, nmax}], x]
Table[Sum[PartitionsP[k] PartitionsP[n - 4 k], {k, 0, n/4}], {n, 0, 48}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 13 2018
STATUS
approved