login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A035444
Number of partitions of n into parts 4k.
17
1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 7, 0, 0, 0, 11, 0, 0, 0, 15, 0, 0, 0, 22, 0, 0, 0, 30, 0, 0, 0, 42, 0, 0, 0, 56, 0, 0, 0, 77, 0, 0, 0, 101, 0, 0, 0, 135, 0, 0, 0, 176, 0, 0, 0, 231, 0, 0, 0, 297, 0, 0, 0, 385, 0, 0, 0, 490, 0, 0, 0, 627, 0, 0, 0, 792, 0, 0, 0, 1002, 0
OFFSET
0,9
LINKS
FORMULA
a(4*n) = A000041(n). a(4*n + 1) = a(4*n + 2) = a(4*n + 3) = 0. - Michael Somos, Jun 02 2012
G.f.: 1 / Product_{n>=1} 1 - q^(4*n). - Joerg Arndt, Aug 26 2015
MAPLE
seq(coeff(series(mul(1/(1-x^(4*k)), k=1..n), x, n+1), x, n), n=0..105); # Muniru A Asiru, Jul 22 2018
MATHEMATICA
nmax=100; CoefficientList[Series[Product[1/(1 - x^(4 k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vincenzo Librandi, Jul 04 2018 *)
nmax = 50; kmax = nmax/4; s = Range[0, kmax]*4;
Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 03 2020 *)
PROG
(PARI) A035444(n) = if((n%4), 0, numbpart(n/4)); \\ Antti Karttunen, Jul 03 2018
CROSSREFS
Sequence in context: A244140 A091227 A300715 * A376417 A376418 A244141
KEYWORD
nonn
EXTENSIONS
Error in offset corrected by Vaclav Kotesovec, Aug 26 2015
Name simplified, Joerg Arndt, Aug 26 2015
STATUS
approved