login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244141
Triangle read by rows: terms T(n,k) of a binomial decomposition of n*(-1)^n as Sum(k=0..n)T(n,k).
28
0, 0, -1, 0, 0, 2, 0, 0, 0, -3, 0, 0, 0, -12, 16, 0, 0, 0, -30, 160, -135, 0, 0, 0, -60, 960, -2430, 1536, 0, 0, 0, -105, 4480, -25515, 43008, -21875, 0, 0, 0, -168, 17920, -204120, 688128, -875000, 373248, 0, 0, 0, -252, 64512, -1377810, 8257536, -19687500, 20155392, -7411887
OFFSET
0,6
COMMENTS
T(n,k)=(-1)^k*k*(k-2)^(n-2)*binomial(n,k) for k>1, while T(n,0)=0 and T(1,1)=-0^(n-1) by convention.
LINKS
S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(21), with a=2, b=1.
EXAMPLE
First rows of the triangle, all summing up to n*(-1)^n:
0,
0, -1,
0, 0, 2,
0, 0, 0, -3,
0, 0, 0, -12, 16,
0, 0, 0, -30, 160, -135,
0, 0, 0, -60, 960, -2430, 1536,
PROG
(PARI) seq(nmax)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=0;
for(n=1, nmax, irow=1+n*(n+1)/2;
v[irow]=0; if(n==1, v[irow+1]=-1, v[irow+1]=0);
for(k=2, n, v[irow+k]=(-1)^k*k*(k-2)^(n-2)*binomial(n, k); ); );
return(v); }
a=seq(100);
KEYWORD
sign,tabl
AUTHOR
Stanislav Sykora, Jun 23 2014
STATUS
approved