login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244120
Triangle read by rows: coefficients T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k)*binomial(n,k).
28
1, 0, 1, 0, 2, 0, 0, 3, 6, 0, 0, 4, 32, 12, 0, 0, 5, 120, 180, 20, 0, 0, 6, 384, 1458, 768, 30, 0, 0, 7, 1120, 9072, 12096, 2800, 42, 0, 0, 8, 3072, 48600, 131072, 81000, 9216, 56, 0, 0, 9, 8064, 236196, 1152000, 1440000, 472392, 28224, 72, 0, 0, 10, 20480, 1071630, 8847360, 19531250, 13271040, 2500470, 81920, 90, 0
OFFSET
0,5
COMMENTS
T(n,k)=n*(n-k)^(k-1)*k^(n-k) for k>0, while T(n,0)=0^n by convention.
LINKS
S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(5), with b=1.
EXAMPLE
The first rows of the triangle are:
1
0 1
0 2 0
0 3 6 0
0 4 32 12 0
0 5 120 180 20 0
PROG
(PARI) seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=1;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k] = n*(n-k*b)^(k-1)*(k*b)^(n-k); ); );
return(v); }
a=seq(100, 1);
KEYWORD
nonn,tabl
AUTHOR
Stanislav Sykora, Jun 21 2014
STATUS
approved