login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244116
Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 1 as Sum_{k=0..n} T(n,k)*binomial(n,k).
28
1, 0, 1, 0, 1, -1, 0, 1, -2, 4, 0, 1, -4, 12, -27, 0, 1, -8, 36, -108, 256, 0, 1, -16, 108, -432, 1280, -3125, 0, 1, -32, 324, -1728, 6400, -18750, 46656, 0, 1, -64, 972, -6912, 32000, -112500, 326592, -823543, 0, 1, -128, 2916, -27648, 160000, -675000, 2286144, -6588344, 16777216
OFFSET
0,9
COMMENTS
T(n,k) = (1-k)^(k-1) * k^(n-k) for k>0, and T(n,0) = 0^n by convention.
LINKS
Stanislav Sykora, Table of n, rows 0..100
S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014. See eq.(4) with b=1.
EXAMPLE
The first few rows of the triangle are:
1
0 1
0 1 -1
0 1 -2 4
0 1 -4 12 -27
0 1 -8 36 -108 256
...
MAPLE
A244116 := (n, j) -> (-1)^(j + 1) * j^(n - j) * (j - 1)^(j - 1):
for n from 0 to 9 do seq(A244116(n, k), k = 0..n) od; # Peter Luschny, Jan 28 2023
PROG
(PARI) seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=1;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k] = (1-k*b)^(k-1)*(k*b)^(n-k); );
); return(v); }
a=seq(100, 1);
KEYWORD
sign,tabl
AUTHOR
Stanislav Sykora, Jun 21 2014
STATUS
approved