login
A244126
Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 2^n-1 as Sum(k=0..n)T(n,k)*binomial(n,k).
28
0, 0, 1, 0, 0, 3, 0, 0, -3, 16, 0, 0, 3, -32, 125, 0, 0, -3, 64, -375, 1296, 0, 0, 3, -128, 1125, -5184, 16807, 0, 0, -3, 256, -3375, 20736, -84035, 262144, 0, 0, 3, -512, 10125, -82944, 420175, -1572864, 4782969, 0, 0, -3, 1024, -30375, 331776, -2100875, 9437184, -33480783, 100000000, 0, 0, 3, -2048, 91125, -1327104, 10504375, -56623104, 234365481, -800000000, 2357947691, 0, 0, -3, 4096, -273375, 5308416, -52521875
OFFSET
0,6
COMMENTS
T(n,k)=(1+k)^(k-1)*(1-k)^(n-k) for k>0, while T(n,0)=0 by convention.
LINKS
S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(6), with b=-1 and a=1.
EXAMPLE
The first rows of the triangle are:
0,
0, 1,
0, 0, 3,
0, 0, -3, 16,
0, 0, 3, -32, 125,
0, 0, -3, 64, -375, 1296,
PROG
(PARI) seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=0;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k]=(1-k*b)^(k-1)*(1+k*b)^(n-k); ); );
return(v); }
a=seq(100, -1)
KEYWORD
sign,tabl
AUTHOR
Stanislav Sykora, Jun 21 2014
STATUS
approved